Aplicaciones Ecuaciones Diferenciales. Marcapasos de Corazón

Marcapasos de Corazón

Si aprendes lo que te voy a enseñar en éste artículo sobre Aplicaciones Ecuaciones Diferenciales, conocerás una manera ordenada de Cómo ANALIZAR y MODELAR matemáticamente un Sistema Físico de Primer Orden, aplicando Ecuaciones Difernciales Ordinarias

Además, utilizarás el Método de Separación de Variables de 3 pasos propuesto en este sitio para simular un marcapaso del corazón.

 

Cualquier intento para diseñar un sistema debe comenzar con una predicción de su desempeño antes de que el sistema pueda ser diseñado en detalle o construido. Tal predicción es basada sobre una descripción matemática de las características dinamicas del sistema. Esta descripción matemática es llamada Modelo Matemático. Para muchos sistemas físicos, los modelos matemáticos utiles que los describen, están en términos de Ecuaciones Diferenciales.

Katsuhiko Ogata

Metodología para Modelado de un Sistema Físico de Primer Orden

Como vimos en el artículo: Ecuaciones Diferenciales Aplicadas; Modelos No lienales. La metodología para modelar un sistema físico propuesta por el autor Kasuhico Ogata en su libro System Dynamics es la siguiente: Sigue leyendo

Ecuaciones Diferenciales Aplicadas. Modelos No lineales

Ecuaciones Diferenciales Aplicadas

EVAPORACION

Al terminar el siguiente artículo conocerás y podrás aplicar una metodología ordenada para poder plantear matemáticamente y resolver un modelo No lineal representado mediante ecuaciones diferenciales.

En general, lo que se busca, al modelar un sistema físico mediante ecuaciones diferenciales, es utilizar las leyes del movimiento de la física según el sistema del que se esté hablando (mecánico, neumático, hidráulico, eléctrico, etc.), para determinar la variación del comportamiento del mismo respecto del tiempo y así
obtener una representación matemática que nos permita realizar predicciones sobre dicho sistema. De igual forma, se pueden utilizar datos experimentales.

Metodología para modelado matemático de un sistema físico

Según el libro System Dynamics del autor Katsuhico Ogata (4a. Ed), pag. 4, el procedimiento para el modelado matemático es el siguiente:

1.- Dibuja un diagrama esquemático del sistema y define las variables,

2.- Usando las leyes de la física, escribe las ecuaciones para cada componente, combinalas de acuerdo al diagrama del sistema y obten un modelo matemático,

3.- Para verificar la validez del modelo matemático, su desempeño predecido – obtenido mediante el resolver las ecuaciones del modelo, éste es comparado con resultados experimentales.

(La validación de cualquier modelo matematico puede ser corroborada unicamente mediante la experimentación).

Ecuaciones diferenciales aplicadas ejercicios resueltos

Modelo No lineal

EVAPORACION (Ejercicio Resuelto Dennis G. Zill, Cap 3.2, problema 20)

Un tanque decorativo exterior con forma de tanque semiesférico se llenará con agua bombeada hacia el tanque por una entrada en su fondo. Suponga que el radio del tanque es $ R = 10 {pies}$, que el agua se bombea a una rapidez de $ \pi \frac{{pies}^3}{\min}$ y que al inicio el tanque está vacio. Ver Figura 1:

Ecuaciones Diferenciales Aplicadas

Figura 1. Diagrama Esquemático del Sistema

Conforme se llena el tanque, éste pierde agua por evaporación. Suponga que la rapidez de evaporación es proporcional al área A de la superficie sobre el agua y que la constante de proporcionalidad es $ k = 0.01$.

a) La rapidez de cambio $ \frac{{dV}}{{dt}}$ del volumen del agua al tiempo $ t$ es una rapidez neta. Utilice esta rapidez neta para determinar una ecuacion diferencial para la altura $ h$ del agua al tiempo $ t$. El volumen de agua que se muestra en la figura es $ V = \pi R h^2 -\frac{1}{3} \pi h^3$, donde $ R = 10$. Exprese el area de la superficie del agua $ A = \pi r^2$ en terminos de $h$.

b) Resuelva la ecuacion diferencial del inciso a). Trace la grafica de la solución.

c) Si no hubiera evaporacion, ¿cuanto tardaría en llenarse el tanque?

d) Con evaporacion, ¿cual es la proporcionalidad del agua en el tiempo que se determino en el inciso c)? ¿Alguna vez se llenara el tanque?

Solución

Sigue leyendo

Circuito Electrico mixto y las ecuaciones diferenciales

Circuito electrico mixto y ecuaciones diferenciales. Circuitos Eléctricos RLC en serie

En el siguiente artículo aprenderás mediante un ejemplo cómo se resuelve un circuito electrico mixto o circuito electrico RLC utilizando ecuaciones diferenciales y conocerás la relación entre los componentes del circuito y su representación como cantidades diferenciales que cambian con el tiempo.

Para desarrollar este ejemplo partiremos de la configuración básica para un circuito RLC, que es cuando sus componentes están conectados en serie, como lo muestra la Figura 1.

circuito electrico mixto

Figura 1. Circuito RLC conectado en serie

Donde, los elementos mostrados son:

  1. Un resistor con una resistencia $ R$ ohms
  2. Un inductor con una inductancia de $ L$ henries,
  3. Un capacitor con una capacitancia de $ C$ faradios,
  4. Una fuente de Corriente Alterna que suministra un voltaje $ E(t) $de $ 110$ V
  5. a $ 60$ Hz, en el tiempo $ t$.

De acuerdo con los principios elementales de electricidad, las caídas de voltaje a través de los elementos del circuito son las que se muestran en la Tabla 1.

Tabla 1. Tabla de simbología, representación matemática de las caídas de voltaje y valores mostrados en la Figura 1.
Elementos del circuitoSímboloCaída de Voltaje(representación diferencial)Valores
Inductor$ L$$ L\frac{dI}{dt}$$ 100$ mH
Resistor$ R$$ RI$$ 50$ Ω
Capacitor$ C$$ \frac{1}{C}Q$$ 500$ μF
Fuente de corriente alterna$ E(t)$Voltaje suministrado en el tiempo $ t$$ 110$ V a 60Hz

Estas expresiones, para las caídas de voltaje, derivadas de la física, provienen de conclusiones experimentales, que han llevado a las siguientes definiciones:

Caídas de Voltaje. Circuito electrico mixto

  1. Resistencia. La caída de voltaje a través de una resistencia ($ R$) es proporcional a la corriente que pasa a través de ésta, es decir: $ E(t) \alpha I$ ó $ E(t) =R I$ (Ley de Ohm). Donde $ R$ es la constante de proporcionalidad llamada coeficiente de resistencia o simplemente resistencia.
  2. Inductor. La caída de voltaje a través de un inductor es proporcional a la tasa de tiempo instantánea de cambio de la corriente, es decir: $ E(t) \alpha\frac{d{I}}{d{t}}$ ó $ E(t) = L \frac{d{I}}{d{t}}$. Donde $ L$ es la constante de proporcionalidad llamada el coeficiente de inductáncia o simplemente inductor.
  3. Capacitor (condensador). La caída de voltaje a través de un condensador es proporcional a la carga eléctrica instantánea en el condensador: $ E(t) \alpha Q$ ó $ E(t) =\frac{{Q}}{C}$. Donde $ \frac{1}{C}$ es la constante de proporcionalidad y $ C$ es la capacitancia del capacitor o inductor.

Estas definiciones se pueden entender mejor si guardamos en mente que una resistencia disipa una parte de corriente como calor, un inductor se opone a los cambios de corriente por el efecto del campo magnético que genera alrededor de sí que a su vez le autoinduce una tensión, un capacitor (condensador), es un elemento que almacena energía.

La Ecuación Diferencial que representa un circuito RLC conectado en serie.

Todos los elementos del Circuito RLC de este ejemplo están conectados en serie con la fuerza Electromotriz que suministra el voltaje de $ E(t)$ en el tiempo $x t$, como lo muestra la Figura 1. Si el interruptor mostrado en la Figura 1, se cierra, esto provoca una corriente $ I(t)$ en amperes en el circuito y una carga $ Q(t)$ en coulombs en el capacitor en el tiempo $ t$. La relación entre las funciones $ I$ y $ Q$ es:

\begin{equation}
\frac{dQ}{dt} = I(t)
\end{equation}
(1)

Es decir:

La corriente eléctrica o intensidad eléctrica es el flujo de carga (eléctrica) por unidad de tiempo que recorre un material.

Esta relación se deriva de la relación entre la corriente y la carga crecientes, que se obtienen de la experimentación. Las unidades utilizadas para esta ecuación pertenecen al sistema $ mks$, por lo que la unidad de tiempo es el segundo(s).

Para modelar matemáticamente el circuito de la Figura 1, utilizamos una de las leyes de Kirchoff -la aplicada a mallas-, las cuales se basan en la conservación de la energía y la carga aplicada a circuitos eléctricos.

Ley de Kirchoff (mallas)

La suma (algebraica) de las caídas de voltaje a través de los elementos en una malla cerrada de un circuito eléctrico es igual al voltaje aplicado.

Ecuación Diferencial para un circuito eléctrico mixto RLC

De modo que, sumando las caídas de voltaje (ver Tabla 1) e igualándolas al voltaje de la fuente de corriente alterna, tenemos:

\begin{equation}
L \frac{d\mathbf{I}}{d{t}} +{R}{I}+ \frac{1}{C}
\mathbf{Q}= E ( t)
\end{equation}
(2)

Podemos notar que si sustituimos las ecuaciones (1) y (2), para tener solo una función como incógnita (digamos $ Q$), obtenemos:

\begin{equation}
L \frac{d^2 {Q}}{d{t}^2} +{R}
\frac{d{Q}}{d{t}} + \frac{1}{C} {Q}= E ( t)
\end{equation}
(3)

Con lo que tenemos una expresión consistente para el circuito RLC conectado en serie como el mostrado en la Figura 1.

Ahora, si derivamos la ecuación (3) en ambos lados, sustituyendo $ {I}$ por $ {Q}’$ obtenemos:

\begin{eqnarray*}
L \frac{d^2{I}}{d{t}^2} +{R}\frac{d{I}}{d{t}} + \frac{1}{C} \ast\frac{d}{d{t}} \int {I}d{t} & = & E’ ( t)
\end{eqnarray*}

ya que:

\begin{eqnarray*}
\frac{d{Q}}{d{t}} & = & {I} ( t)\\\\
\int d{Q} & = & \int {I} ( t) d{t}\\\\
{Q} & = & \int {I} ( t) d{t}
\end{eqnarray*}

Es decir:

\begin{equation}
L \frac{d^2 {I}}{d{t}^2} +{R}
\frac{d{I}}{d{t}} + \frac{1}{C} {I}= E’ ( t)
\end{equation}
(4)

De esta forma tenemos las ecuaciones (3) y (4), para resolver nuestro problema ejemplo, que a continuación describo.

Circuito electrico mixto y ecuaciones diferenciales. Aplicaciones.

Ecuación Diferencial Aplicada a un Circuito Eléctrico tipo RLC de 2º Orden

Ejemplo:

Considere un circuito RLC con $ R = 50 {ohms} ({\Omega})$, $ L =0.1 {henry} ( H)$ y $ C = 5 \times 10^{- 4} {farad} ( F)$. En el tiempo $ t=0$, cuando tanto $ {I}(0)$ como $ {Q}(0)$ son cero, el circuito se conecta a un generador de corriente alterna de $ 110 {Volts}, 60 {Hz}$. Encuéntrese la corriente en el circuito.

Solución:

Para resolver este problema recordemos lo siguiente:

El caso típico el voltaje de corriente alterna, se representa como:

\begin{equation}
E(t) = E_0 {sen} {\omega}{t}
\end{equation}
(5)

Donde, $ E_0$es el voltaje inicial (en el tiempo 0).

Solución de una ecuación diferencial lineal NO homogénea de 2º orden

La solución general de una ecuación diferencial lineal no homogénea de 2º orden, se compone de la suma de la solución de su sistema homogéneo asociado mas una solución particular, es decir la solución de una ecuación diferencial lineal no homogénea:

$ \Large {a}_2 y” +{a}_1 y’ +{a}_0 y = f ( x)$

Donde $ {a}_2$, $latex {a}_1$, $latex {a}_0$, son constantes.

Tiene la forma:

$ \large y = y_c + y_p$

Donde:

$ y$: solución general

$ y_c :$ es la solución complementaria o solución del sistema homogéneo asociado: $ {a}_2 y” +{a}_1 y’ +{a}_0 y = 0$

$ y_p$: es una solución particular o solución del sistema no homogéneo:
$ {a}_2 y” +{a}_1 y’ +{a}_0 y = f ( x)$

:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_

En circuitos eléctricos dicha solución tiene un significado físico por lo que para un circuito RLC respresentado por la ecuación diferencial de 2º orden (4): $ L \frac{d^2 {I}}{d{t}^2} +{R}\frac{d{I}}{d{t}} + \frac{1}{C} {I}= E’ ( t)$, la solución está compuesta por: Sigue leyendo