Ecuaciones Diferenciales Aplicadas. Modelos No lineales

Ecuaciones Diferenciales Aplicadas

EVAPORACION

Al terminar el siguiente artículo conocerás y podrás aplicar una metodología ordenada para poder plantear matemáticamente y resolver un modelo No lineal representado mediante ecuaciones diferenciales.

En general, lo que se busca, al modelar un sistema físico mediante ecuaciones diferenciales, es utilizar las leyes del movimiento de la física según el sistema del que se esté hablando (mecánico, neumático, hidráulico, eléctrico, etc.), para determinar la variación del comportamiento del mismo respecto del tiempo y así
obtener una representación matemática que nos permita realizar predicciones sobre dicho sistema. De igual forma, se pueden utilizar datos experimentales.

Metodología para modelado matemático de un sistema físico

Según el libro System Dynamics del autor Katsuhico Ogata (4a. Ed), pag. 4, el procedimiento para el modelado matemático es el siguiente:

1.- Dibuja un diagrama esquemático del sistema y define las variables,

2.- Usando las leyes de la física, escribe las ecuaciones para cada componente, combinalas de acuerdo al diagrama del sistema y obten un modelo matemático,

3.- Para verificar la validez del modelo matemático, su desempeño predecido – obtenido mediante el resolver las ecuaciones del modelo, éste es comparado con resultados experimentales.

(La validación de cualquier modelo matematico puede ser corroborada unicamente mediante la experimentación).

Ecuaciones diferenciales aplicadas ejercicios resueltos

Modelo No lineal

EVAPORACION (Ejercicio Resuelto Dennis G. Zill, Cap 3.2, problema 20)

Un tanque decorativo exterior con forma de tanque semiesférico se llenará con agua bombeada hacia el tanque por una entrada en su fondo. Suponga que el radio del tanque es $ R = 10 {pies}$, que el agua se bombea a una rapidez de $ \pi \frac{{pies}^3}{\min}$ y que al inicio el tanque está vacio. Ver Figura 1:

Ecuaciones Diferenciales Aplicadas

Figura 1. Diagrama Esquemático del Sistema

Conforme se llena el tanque, éste pierde agua por evaporación. Suponga que la rapidez de evaporación es proporcional al área A de la superficie sobre el agua y que la constante de proporcionalidad es $ k = 0.01$.

a) La rapidez de cambio $ \frac{{dV}}{{dt}}$ del volumen del agua al tiempo $ t$ es una rapidez neta. Utilice esta rapidez neta para determinar una ecuacion diferencial para la altura $ h$ del agua al tiempo $ t$. El volumen de agua que se muestra en la figura es $ V = \pi R h^2 -\frac{1}{3} \pi h^3$, donde $ R = 10$. Exprese el area de la superficie del agua $ A = \pi r^2$ en terminos de $h$.

b) Resuelva la ecuacion diferencial del inciso a). Trace la grafica de la solución.

c) Si no hubiera evaporacion, ¿cuanto tardaría en llenarse el tanque?

d) Con evaporacion, ¿cual es la proporcionalidad del agua en el tiempo que se determino en el inciso c)? ¿Alguna vez se llenara el tanque?

Solución

Sigue leyendo

Ecuacion Diferencial lineal Homogenea y su sistema no homogeneo

Ecuacion Diferencial lineal homogénea y su sistema no homogéneo; de 1er orden

Con el método de los 4 pasos que puedes encontrar en este link: ED lineal de 1er orden, click aquí, podrás resolver cualquier ecuacion diferencial lineal homogenea.

Te recomiendo que uses el método varias veces antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito. Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias Ver el siguiente link: Learn More, Study Less: The Video Course. Se que les servirá mucho.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 24). Tomado de: Dennis G. Zill Ed 7ma.

$({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$ , que es “$(x^{2} – 1)$ ”, los coeficientes de los demás términos de la ecuación que dependen de “$x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{{{(x+1)}^{2}}}{(x-1)(x+1)}$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Sustituimos el valor de P($x$) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{2}{{{x}^{2}}-1}$. El desarrollo de la las fracciones parciales se muestra al final del ejercicios, así como las formulas integrales y el manejo de las funciones trascendentes.

${{e}^{2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}={{e}^{2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$={{e}^{2\mathop{\int }^{}\frac{dx}{2\left( x-1 \right)}-2\mathop{\int }^{}\frac{dx}{2\left( x+1 \right)}}}$

$={{e}^{\mathop{\int }^{}\frac{dx}{\left( x-1 \right)}-\mathop{\int }^{}\frac{dx}{\left( x+1 \right)}}}$

$={{e}^{\ln |x-1|-\ln |x+1|}}$

$={{e}^{\ln \frac{|x-1|}{|x+1|}}}$

$=\frac{x-1}{x+1}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=0$. Sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{2}{{{x}^{2}}-1}$, encontrado en el primer paso,  y desarrollamos. Notar que el resultado de ${{y}_{c}}$, es el recíproco del factor integrante multiplicado por C. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}$

$=C{{e}^{-2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$=C{{e}^{-\ln \left| x-1 \right|+\ln |x+1|}}$

$=C{{e}^{\ln \frac{|x+1|}{|x-1|}}}$

$=C\frac{x+1}{x-1}$

Gráfica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=C\frac{x+1}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular ${{y}_{c1}}=\frac{2(x+1)}{x-1}$ donde $C=2$. Notar que la función ${{y}_{c}}=C\frac{x+1}{x-1}$  , tiene como dominio más largo el intervalo: $1<x<\infty $. Sin embargo, debido a la no definición de la gráfica en $-1 < x < 1$, se puede tomar éste intervalo para hacer evidente ésta no definición. El intervalo más largo de definición de UNA solución es: $(1, \infty )$. El intervalo de definición de una solución, por definición (ver: Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{x-1}{x+1}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x+1}{x-1}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo.

${{y}_{p}}=\frac{x+1}{\text{x}-1}\mathop{\int }^{}\frac{x-1}{x+1}(\frac{x+1}{x-1})dx$

$=\frac{x+1}{\text{x}-1}\mathop{\int }^{}dx$

$=\frac{x+1}{\text{x}-1}[x]$

$=\frac{x(x+1)}{\text{x}-1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular $\text{y}\left( \text{x} \right)=\frac{(x+1)(2+x)}{x-1}$,

Donde: $C=2$. Nuevamente notar que la función $y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$ , tiene como dominio el intervalo: $(-1,1)$ y como dominio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$, es:

$y=\frac{(c+x)(x+1)}{x-1}$

Con intervalo de solución:

Nota: $latex c$ puede ser negativa si se toma el valor negativo del valor absoluto del logaritmo en el paso III.

$\Large I:\left \{ x\epsilon \mathbb{R}\mid -1< x< 1 \right \}$

Recordar:

Fraciones parciales

$\frac{1}{{{x}^{2}}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$=A\left( x+1 \right)+B(x-1)$

$=Ax+A+Bx-B$

$=(A+B)x+A-B$

Igualando los términos semejantes de la derecha con los de la izquierda.

No hay términos en “x” así que:

$A+B=0$ $\Rightarrow A=-B$

Para las variables A, B solas, está el “1”

$A-B=1$  $\Rightarrow A=1+B$

Por tanto:

$-B=1+B$

$2B=-1$

$B=-\frac{1}{2}$ $\Rightarrow A=\frac{1}{2}$

De donde:

$\frac{1}{{{x}^{2}}-1}=\frac{\frac{1}{2}}{x-1}-\frac{\frac{1}{2}}{x+1}$

$\frac{1}{{{x}^{2}}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_________________________________________________