CÓMO SIMULAR CON MATHEMATICA UN CIRCUITO RC EN SERIE

CÓMO SIMULAR CON MATHEMATICA UN CIRCUITO RC EN SERIE

Aplicaciones de Ecuaciones Diferenciales. Simulación de Circuitos Eléctricos tipo RC conectado en serie, con MATHEMATICA

El terminar este artículo sabrás simular cualquier circuito eléctrico tipo RC conectado en serie con función de entrada constante, con el software MATHEMATICA.

La simulación con software cada vez cobra un mayor auge, debido a que nos permite anticipar errores y mitigar costos de tiempo y dinero (esto último en el caso de simulación de sistema de ingeniería o física).

Según el profesor Dr. Peter Dannenmann, la simulación por computadora es necesaria para cualquier sistema antes de ser construido ya sea para conocer los posibles problemas de seguridad o simplemente para evitar costos de reconstrucción.

En nuestro caso, la simulación por computadora es importante, no solo para futuros sistemas complejos a simular, si no para poder comprobar nuestros propios resultados en el momento presente, conforme vamos aprendiendo Ecuaciones Diferenciales o cualquier materia de física o matemáticas.

Para el desarrollo de este ejercicio utilizaremos el mismo ejemplo desarrollado en el artículo: Ecuaciones Diferenciales para Circuitos Eléctricos. Circuito RC en serie, donde se hace referencia a cómo modelar un circuito eléctrico.

Para desarrollar este ejercicio, utilizaremos el siguiente método:

1.- Describiremos los datos en MATHEMATICA, asignandolos a variables

2.- Resolveremos el problema mediante dos formas.

a. Método directo.

Plantearemos la Ecuación Diferencial a resolver y la asignaremos a una variable.

Resolveremos (al final del método paso a paso), la ecuación anterior mediante el comando DSolve.

b. Método paso a paso

Solcionaremos de acuerdo al método de los 4 pasos.

DIAGRAMA ELÉCTRICO PARA UN CIRCUITO ELÉCTRICO RC EN SERIE

Figura 1. Circuito eléctrico del tipo RC conectado en serie

Figura 1. Circuito eléctrico del tipo RC conectado en serie

Asignamos datos a las variables en MATHEMATICA.

Datos: Sigue leyendo

Ecuaciones Diferenciales para Circuitos Eléctricos. Circuito RC en Serie

Circuito RC en serie. Ecuaciones Diferenciales para Circuitos Eléctricos.

Aplicación de una Ecuación Diferencial a un circuito RC eléctrico conectado en serie

Leyendo éste artículo aprenderás a aplicar las ecuaciones diferenciales a un circuito eléctrico tipo RC conectado en serie (circuito RC en serie), y resolverás, utilizando un método paso a paso, el circuito RC, para encontrar sus variables de corriente $ i ( t)$ y carga $ q ( t)$.  Además de entender cómo realizar el análisis de un circuito eléctrico de este tipo. Utilizaremos de nuevo la misma metodología del artículo: Ecuaciones Diferenciales Aplicadas a Circuitos Eléctricos, que consta de los siguientes 3 pasos.

 

  • Modelaremos el Circuito Electrico con Ecuaciones Diferenciales
  • Solucionaremos la Ecuacion Diferencial resultante
  • Graficaremos la corriente encontrada.

Para el Modelado de éste Circuito Eléctrico, utilizaremos las leyes de Kirchoff vistas en el artículo Circuitos Eléctricos y Ecuaciones Diferenciales solo que ahora el circuito a estudiar es del tipo RC

Para la Solución de la Ecuación Diferencial aplicaremos el método de los 4 pasos para la solución de las ecuaciones diferenciales lineales de 1er orden que aquí hemos utilizado.

Utilizaremos MATHEMATICA para la graficación de resultados.

Finalmente, compararemos los modelos resultantes para la simulación de circuitos del tipo RC con los modelos obtenidos para los circuitos del tipo RLC para poder entender su relación común, ya que parten del mismo criterio. Ver artículo: Circuitos Eléctricos y Ecuaciones Diferenciales.

Para esto resolveremos un ejercicio.

Ejercicio resuelto: Capitulo 3.1 Libro Dennis G. Zill Ed 7ma, (Problema 31).

Circuito rc en serie

PROBLEMA

Se aplica una fuerza electromotriz de 100V a un circuito en serie RC en el que la resistencia es de 200 ohms y la capacitancia de $ 10^{-4}$ farads. Determine la carga $ q ( t)$ del capacitor, si $ q ( 0) = 0$. Encuentre la corriente $ i ( t)$. El circuito esta descrito en la Figura 1.

circuito rc en serie

Figura 1. Circuito Eléctrico tipo RC conectado en serie

Circuito rc en serie. Modelado del Circuito Eléctrico tipo RC en serie con Ecuaciones Diferenciales

Sigue leyendo

Intervalo de Solución de una Ecuacion Diferencial como Problema del Valor Inicial.

Intervalo de solucion de una ecuacion diferencial

Intervalo de Solución de un Problema del Valor Inicial.

En este artículo aprenderás en 4 pasos a resolver una Ecuación Diferencial Lineal y encontrar su Intervalo de solución el cual fácilmente identificándolo gráficamente.

Ejercicios 2.3 Libro Dennis G. Zill (Problema 27).

Ecuacion Diferncial Lineal: Circuito LR en serie

Encontrar la solución para el problema del valor inicial (PVI), sujeta a:

a)      $ L\frac{di}{dt}+Ri=E$,             $ i(0)={{i}_{o}}$

Y, encontrar el intervalo I de solución.

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entre el coeficiente de $ \frac{di}{dt}$, que es “$ L$”, los coeficientes de los demás términos de la ecuación que dependen de “t”.

$ \frac{di}{dt}+P\left( t \right)i=f(t)$

$ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$

II.                  En el segundo paso encontramos el factor integrante: ,  

El valor de P(t) en $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}$, $ P(t)=\frac{R}{L}$.

$ {{e}^{\frac{R}{L}\mathop{\int }^{}dt}}={{e}^{\frac{R}{L}t}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$ \frac{di}{dt}+\frac{R}{L}i=0$. Sustituimos en $ {{i}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $ P(t)=\frac{R}{L}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{i}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{\text{i}}_{c}}=C{{e}^{-\frac{R}{L}\mathop{\int }^{}dt}}$

$ =C{{e}^{-\frac{R}{L}t}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ \text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }{{\text{i}}_{c}}={{i}_{0}}$ , de modo que:

Sustituyendo en:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$

Tenemos:

$ {{i}_{0}}=C\left( 1 \right)~\Rightarrow ~~C={{i}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{i}_{c}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ y la solución particular  $ {{i}_{c1}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Intervalo de solucion de una ecuacion diferencial

La función $ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ , tiene como dominio más largo el intervalo:

$ D_{x_{c}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Por tanto, la solución particular $ i_{c1}=i_{0}e^{-\frac{R}{L}t}$, tiene el mismo dominio:

$ D_{x_{c1}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

tambien.

Es decir, el dominio de las funciones abarca todos los números reales. Notar que la solución particular solo involucra a las curvas que intersectan a

$ i(t)$, dentro del rango que estemos analizando.

El valor de $ C={{i}_{0}}$ , para la solución particular del PVI $ L\frac{di}{dt}+Ri=0$,  $ i(0)={{i}_{o}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$. Para resolverla utilizamos la fórmula: $ {{i}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}=\frac{R}{L}$ (obtenido en el punto ii.) y $ f\left( t \right)=\frac{E}{L}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{i}_{p}}=\frac{1}{{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{E}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{R}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}[{{e}^{\frac{R}{L}t}}]$

$ =\frac{E}{R}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$ t=0;~~~~~~i={{i}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Entonces, sustituyendo los valores iniciales
$ i\left( 0 \right)={{i}_{0}}$

Tenemos:

$ {{i}_{0}}=C{{e}^{-\frac{R}{L}(0)}}+\frac{E}{R}$

$ \Rightarrow {{i}_{0}}=C(1)+\frac{E}{R}$

$ \Rightarrow C={{i}_{0}}-\frac{E}{R}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

y la solución particular:
$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Intervalo de solucion de una ecuacion diferencial

El dominio de la solución $ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$ está en el intervalo:

$ D_{i(t)}:- \infty < t < \infty$

O dicho de forma más común, el dominio de la solución del PVI:

($ L\frac{di}{dt}+Ri=E$,   $ i(0)={{i}_{o}}$ ), es el intervalo: $ (-\infty ,\infty )$. Notar que el valor de $ C={{i}_{0}}-\frac{E}{R}$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial: $ L\frac{di}{dt}+Ri=E$, $ i(0)={{i}_{o}}$, es,

$ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$

Con intervalo de solución:

$ \Large I:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Para aprender a realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 28ejercicio 29

Quiero ejemplos de circuitos electricos RLC en serie click aquí

Quiero ejemplos de circuitos electricos RC en serie click aquí

Quiero otro ejemplos de circuitos electricos RL en serie click aquí

Quiero mas ejemplos de aplicaciones

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto (da click aquí)