Como Hallar la Solución del PVI con una Ecuación Diferencial (ED) Definida en partes

Como hallar solución del pvi ed Definida en partes

Solución de un Problema con Valores Iniciales (PVI), de una Ecuación Diferencial (ED) definida en partes (a trozos).

Ahora, aprenderemos a resolver una Ecuación Diferencial lineal por partes con la variante de que analizaremos y entenderemos qué significa gráficamente la función , que es el coeficiente de la función de estado , que la ED posee como segundo término del lado izquierdo de la ecuación*.

Utilizaremos los mismos 4 pasos que ya hemos utilizado con anterioridad para hallar la solución de una ED lineal de 1er Orden DEFINIDA POR PARTES (a TROZOS), CON VALORES INICIALES.

El Ejercicio:

a)      $y’+P(x)y=4x$,             $y\left( 0 \right)=3$,

$\LARGE P(x)=\left\{\begin{matrix}2,0\leq x\leq 1\\ -\frac{2}{x},x>1\end{matrix}\right.$

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 35).

Empezamos con $P\left( x \right)=2~~~y~~~f\left( x \right)=4x$
$y’+2y=4x$
Pasos:
I.                    Forma estándar de la ED a resolver: $\frac{dy}{dx}+P(x)y=f(x)$

Solo sustituimos en valor de la función de entrada $P(x)$.

$\frac{dy}{dx}+2y=4x$

II.                  Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=2$.

${{e}^{\mathop{\int }^{}2dx}}={{e}^{2\mathop{\int }^{}dx}}$

$={{e}^{2x}}$

III.                Encontramos la familia de soluciones del sistema homogéneo asociado:

Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=2$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace:  Solución del sistema homogéneo asociado.

$\frac{dy}{dx}+2y=0$

${{y}_{c1}}={{C}_{1}}{{e}^{-2\mathop{\int }^{}dx}}$

$={{C}_{1}}{{e}^{-2x}}$

$=\frac{{{C}_{1}}}{{{e}^{2x}}}$

IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:

Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}={{e}^{2x}}$ (obtenido en el punto ii.) y $f\left( x \right)=2$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$\frac{dy}{dx}+2y=4x$

${{y}_{p1}}=\frac{1}{{{e}^{2x}}}\mathop{\int }^{}{{e}^{2x}}(4x)dx$

${{y}_{p1}}=\frac{4}{{{e}^{2x}}}\mathop{\int }^{}x{{e}^{2x}}dx$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

$u=x$                          $dv={{e}^{2x}}dx$

$du=dx$     $v=\frac{1}{2}{{e}^{2x}}$

$~\mathop{\int }^{}x{{e}^{2x}}dx=\frac{1}{2}x{{e}^{2x}}-\frac{1}{2}\mathop{\int }^{}{{e}^{2x}}dx$

$=\frac{1}{2}x{{e}^{2x}}-\frac{1}{4}\mathop{\int }^{}{{e}^{2x}}(2)dx$

$=\frac{1}{2}x{{e}^{2x}}-\frac{1}{4}{{e}^{2x}}$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Por tanto:

${{y}_{p1}}=\frac{4}{{{e}^{2x}}}[\frac{1}{2}x{{e}^{2x}}-\frac{1}{4}{{e}^{2x}}]$

${{y}_{p1}}=2x-1$

Por tanto, la solución general del sistema LINEAL no homogéneo:
$\frac{dy}{dx}+2y=4x$, donde su función de entrada es igual a: $\mathbf{f}\left( \mathbf{x} \right)=4\mathbf{x}$, es:

${{y}_{1}}\left( x \right)=\frac{{{C}_{1}}}{{{e}^{2x}}}+2x-1$

Ahora encontraremos la solución general para el coeficiente P(x)=$ -\frac{2}{x}$ y $f\left( x \right)=4x$

Procedemos igual que en el caso anterior. Es decir, si tenemos:

$y’-\frac{2}{x}y=4x$

I. Forma estándar de la ED a resolver:

$\frac{dy}{dx}-\frac{2}{x}=4x$

II. Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Es el mismo que el anterior:

${{e}^{-2\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{-2\ln \left| x \right|}}={{e}^{\ln {{\left| x \right|}^{-2}}}}={{x}^{-2}}=\frac{1}{{{x}^{2}}}$

III. Encontramos la familia de soluciones del sistema homogéneo asociado:

${{y}_{c2}}={{C}_{2}}{{e}^{(-)-2\mathop{\int }^{}\frac{1}{x}dx}}={{C}_{2}}{{e}^{2\ln \left| x \right|}}={{C}_{2}}{{x}^{2}}$

IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:

Acá es donde varían un poco los cálculos, como sigue:

${{y}_{p2}}=\frac{1}{\frac{1}{{{x}^{2}}}}\mathop{\int }^{}\frac{1}{{{x}^{2}}}(4x)dx$

${{y}_{p2}}={{x}^{2}}\mathop{\int }^{}\frac{4}{x}dx$

${{y}_{p2}}=4{{x}^{2}}\mathop{\int }^{}\frac{1}{x}dx$

${{y}_{p1}}=4{{x}^{2}}\ln |x|$

Donde su solución general es:

${{y}_{2}}\left( x \right)={{C}_{2}}{{x}^{2}}+4{{x}^{2}}\ln |x|$

Una vez obtenidas las dos soluciones generales, vamos a encontrar las soluciones particulares para resolver el problema de valores iniciales que nos piden.

Para este propósito, NECESITAMOS seleccionar primero la parte de la función $P(x)$ que contiene los valores iniciales, es decir, seleccionamos:

$\frac{dy}{dx}+2y=4x$

Ya que cuando: $P\left( x \right)=2$, la función está definida en $0\le x\le 1$donde podemos encontrar incluidos los valores iniciales ($y\left( 0 \right)=3$) se encuentran dentro de su dominio, como lo podemos ver en:

$\LARGE P(x)=\left\{\begin{matrix}2,0\leq x\leq 1\\ …\end{matrix}\right.$

De modo que encontraremos la solución particular o “RESPUESTA DEL SISTEMA”, para los valores iniciales: $y\left( 0 \right)=3$.

Solución del Problema de Valores Iniciales (PVI) de la ecuación diferencial lineal de 1er Orden dividida en partes. Sigue leyendo

Intervalo de solucion ecuaciones diferenciales. Problema de valores iniciales (PVI)

Intervalo de solucion ecuaciones diferenciales

Encontrar el intervalo de solución más largo “I”, para el Problema del Valor inicial:

a)      ${{y}^{‘}}+\left( \tan x \right)y={{\cos }^{2}}x$,             $ y\left( 0 \right)=-1$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 30).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que $ f(x)$ , es una constante.

$ \frac{dy}{dx}+P(x)y=f(x)$

$ \frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$

II.                  En el segundo paso encontramos el factor integrante: $ {{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\tan x$.

${{e}^{\mathop{\int }^{}\tan xdx}}={{e}^{-\ln (\cos x)}}$

$ ={{e}^{\ln {{(\cos x)}^{-1}}}}$

$ ={{(\cos x)}^{-1}}$

$ =\frac{1}{\cos x}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dy}{dx}+(\tan x)y=0$. Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\tan x$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-\mathop{\int }^{}\tan xdx}}$

$ =C{{e}^{(-)-\ln (\cos x)}}$

$ =C{{e}^{\ln (\cos x)}}$

$ =C\cos x$

Solución Específica para el Sistema Homogéneo.

Intervalo de solucion ecuaciones diferenciales

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ x=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }y=-1$ , de modo que:

Sustituyendo en:

${{y}_{c}}=C\cos x$

Tenemos:

$ -1=C\cos 0~\Rightarrow ~~C=~-1$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{y}_{c1}}=-\cos x$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=C\cos x$ y la solución particular  ${{y}_{c1}}=-\cos x$

intervalo de solucion ecuaciones diferenciales

La función $ {{y}_{c}}=C\cos x$, tiene como dominio más largo el intervalo: \({{D}_{{y}_{c}}}:\big\{x \in R \mid – \frac{ \pi }{2} < x <  \frac{ \pi }{2}\big\}\). Sin embargo, la solución particular \( {{y}_{{c}_{1}}}=\cos x\), tiene el mismo dominio:

$D_{y_{c1}}:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

Es decir, la función del problema de valores iniciales, no tiene el mismo que el de la función, solución general. El valor de \(C\) es \(C=-1\), para le solución particular del PVI \(\frac{dy}{dx}+\big(\tan x\big) \ast y=0\), con \(y \left ( 0 \right ) = -1\).  Ver gráfica al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{1}{\cos x}$ (obtenido en el punto ii.) y $f\left( x \right)={{\cos }^{2}}x$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{{{(\cos x)}^{-1}}}\mathop{\int }^{}{{(\cos x)}^{-1}}({{\cos }^{2}}x)dx$

$ {{y}_{p}}=\cos x\mathop{\int }^{}{{(\cos x)}^{-1}}{{(\cos x)}^{2}}dx$

$ {{y}_{p}}=\cos x\mathop{\int }^{}\cos xdx$

$ {{y}_{p}}=\cos x\sin x$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

Intervalo de solucion ecuaciones diferenciales

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “$ x$” e “$ y$”, que vienen como condiciones iniciales y despejando “ C ”.

$x=0;~~~~~~y=-1$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ y\left( x \right)=C\cos x+\cos x\sin x$

Entonces, sustituyendo los valores iniciales
$ y\left( 0 \right)=-1$

Tenemos:

$ -1=C\cos 0+\cos 0\sin 0$

$ \Rightarrow -1=C(1)+(1)(0)$

$ \Rightarrow -1=C+0$

$ \Rightarrow C=-1$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ y\left( x \right)=-\cos x+\cos x\sin x$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ y\left( x \right)=C\cos x+\cos x\sin x$

y la solución particular del PVI:
$ y\left( x \right)=-\cos x+\cos x\sin x$

intervalo de solucion ecuaciones diferenciales

El dominio de la solución $ y\left( x \right)=-\cos x+\cos x\sin x$ está en el intervalo: $D_{y(x)}:-\infty< x< \infty$ O dicho de forma más común, el dominio de las solución del PVI ($\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$,   $y\left( 0 \right)=-1$), es el intervalo abierto: $ (-\infty ,\infty )$, ver la gráfica anterior para notar la diferencia entre intervalo de solución del PVI e intervalo de la solución general. También, ver gráfica al final del ejercicio. Notar que el valor de $C=-1$ , para el problema del PVI, acá mostrado. Ver al final el desglose de los dominios de cada una de las gráficas que incluye la función solución del PVI (sistema no homogéneo).

Por tanto, la solución del Problema del Valor Inicial: 

$\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$, es,

$y\left( x \right)=-\cos x+\cos x\sin x$

Con intervalo de solución:

$\LARGE I:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

En la siguiente gráfica se ve más claramente la diferencia entre el dominio de la función solución general y el dominio de la solución particular del problema de Valores Iniciales:

intervalo de solucion ecuaciones diferenciales

Como podemos notar, la función solución ($y\left( x \right)=-\cos x+\cos x\sin x$) del Problema de valores iniciales:  ( $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$), está definida para todo el intervalo $(-\infty ,\infty )$, aunque la función, solución general, de la Ecuación Diferencial: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, no está definida para los valores múltiplos enteros de $\frac{\pi }{2}$, o en radianes (como aparece en las gráficas), son los múltiplos de: $1.57079633$ radianes.

Por tanto:

Para la solución general, el intervalo de solución es: $\left( -\frac{\pi }{2},\frac{\pi }{2} \right)$

Para la solución del PVI, el intervalo de solución es: $\left( -\infty ,\infty \right)$

Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos: Ecuación diferencial, ejercicio del Capítulo 2.3 Problema 17

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Puedes descargar éste artículo en formato PDF dando click aquí

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Ecuacion diferencial lineal de primer orden. Prob 25 Cap 2.3. G. Zill.

Ecuacion diferencial lineal de primer orden

Intervalo de definición de la solución del problema del valor inicial. Problema 25 Capítulo 2.3. Dennis G. Zill.

Utilizaremos el método de los 4 pasos que puedes encontrar en este link: podrás resolver cualquier ED lineal de 1er orden.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 25). Tomado de: Dennis G. Zill Ed 7ma.

$xy’+y={{e}^{x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{y}{x}=\frac{{{e}^{x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{1}{x}$. El manejo de las funciones trascendentes e integrales se muestra al final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{\ln x}}$

$=\text{x}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{y}{x}=0$. Sustituimos en ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, donde: $P(x)=\frac{1}{x}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-\ln x}}$

$=C{{e}^{\ln {{x}^{-1}}}}$

$=C{{\text{x}}^{-1}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C}{x}$

ecuacion diferencial lineal de primer orden

Mostramos, primero la famila de soluciones del sistema homogéneo asociado ${{y}_{c}}=\frac{C}{x}$  . Además, mostramos una solución particular ${{y}_{c1}}=\frac{2}{x}$ donde $C=2$. Notar que la función ${{y}_{c}}=\frac{C}{x}$  , tiene como dominio más largo el intervalo: ${{D}_{{{y}_{c}}}}:x\in \mathcal{R}-(0,0)$. Es decir, el dominio de la función abarca todos los reales a excepción del CERO. Sin embargo, decimos que el intervalos más largo de solución de la función es  $0Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo..

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo: $\frac{dy}{dx}+\frac{y}{x}=\frac{{{e}^{x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=x$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{x}}}{x}$ obtenido en el punto i. Observar como la solución particular fue idéntica a $f\left( x \right)$. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x}\mathop{\int }^{}x(\frac{{{e}^{x}}}{x})dx$

$=\frac{1}{x}\mathop{\int }^{}{{e}^{x}}dx$

$=\frac{1}{x}[{{e}^{x}}]$

$=\frac{{{e}^{x}}}{\text{x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C}{x}+\frac{{{e}^{x}}}{x}$

ecuacion diferencial lineal de primer orden

La solución del sistema no homogéneo, es decir la solución de la ED lineal completa, para el problema del valor inicial (PVI) es:$ ~y\left( x \right)=\frac{2-\text{e}+{{\text{e}}^{x}}}{x}$  , Donde: $ C=2-e$. El dominio de la solución está en el intervalo: $D_{y_{p}}:0< x< \infty$ o dicho de forma más común, el dominio de la solución del problema del PVI es el intervalo: $\left ( 0,\infty  \right )$

Por tanto, la solución general de la ecuacion diferencial lineal de primer orden

$xy’+y={{e}^{x}}$, es:

$y=\frac{C{{e}^{x}}}{x}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_______________________________________________________________________________________________________________________________________________________________________________________________________

Ecuacion Diferencial lineal Homogenea y su sistema no homogeneo

Ecuacion Diferencial lineal homogénea y su sistema no homogéneo; de 1er orden

Con el método de los 4 pasos que puedes encontrar en este link: ED lineal de 1er orden, click aquí, podrás resolver cualquier ecuacion diferencial lineal homogenea.

Te recomiendo que uses el método varias veces antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito. Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias Ver el siguiente link: Learn More, Study Less: The Video Course. Se que les servirá mucho.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 24). Tomado de: Dennis G. Zill Ed 7ma.

$({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$ , que es “$(x^{2} – 1)$ ”, los coeficientes de los demás términos de la ecuación que dependen de “$x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{{{(x+1)}^{2}}}{(x-1)(x+1)}$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Sustituimos el valor de P($x$) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{2}{{{x}^{2}}-1}$. El desarrollo de la las fracciones parciales se muestra al final del ejercicios, así como las formulas integrales y el manejo de las funciones trascendentes.

${{e}^{2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}={{e}^{2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$={{e}^{2\mathop{\int }^{}\frac{dx}{2\left( x-1 \right)}-2\mathop{\int }^{}\frac{dx}{2\left( x+1 \right)}}}$

$={{e}^{\mathop{\int }^{}\frac{dx}{\left( x-1 \right)}-\mathop{\int }^{}\frac{dx}{\left( x+1 \right)}}}$

$={{e}^{\ln |x-1|-\ln |x+1|}}$

$={{e}^{\ln \frac{|x-1|}{|x+1|}}}$

$=\frac{x-1}{x+1}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=0$. Sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{2}{{{x}^{2}}-1}$, encontrado en el primer paso,  y desarrollamos. Notar que el resultado de ${{y}_{c}}$, es el recíproco del factor integrante multiplicado por C. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}$

$=C{{e}^{-2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$=C{{e}^{-\ln \left| x-1 \right|+\ln |x+1|}}$

$=C{{e}^{\ln \frac{|x+1|}{|x-1|}}}$

$=C\frac{x+1}{x-1}$

Gráfica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=C\frac{x+1}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular ${{y}_{c1}}=\frac{2(x+1)}{x-1}$ donde $C=2$. Notar que la función ${{y}_{c}}=C\frac{x+1}{x-1}$  , tiene como dominio más largo el intervalo: $1<x<\infty $. Sin embargo, debido a la no definición de la gráfica en $-1 < x < 1$, se puede tomar éste intervalo para hacer evidente ésta no definición. El intervalo más largo de definición de UNA solución es: $(1, \infty )$. El intervalo de definición de una solución, por definición (ver: Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{x-1}{x+1}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x+1}{x-1}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo.

${{y}_{p}}=\frac{x+1}{\text{x}-1}\mathop{\int }^{}\frac{x-1}{x+1}(\frac{x+1}{x-1})dx$

$=\frac{x+1}{\text{x}-1}\mathop{\int }^{}dx$

$=\frac{x+1}{\text{x}-1}[x]$

$=\frac{x(x+1)}{\text{x}-1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular $\text{y}\left( \text{x} \right)=\frac{(x+1)(2+x)}{x-1}$,

Donde: $C=2$. Nuevamente notar que la función $y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$ , tiene como dominio el intervalo: $(-1,1)$ y como dominio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$, es:

$y=\frac{(c+x)(x+1)}{x-1}$

Con intervalo de solución:

Nota: $latex c$ puede ser negativa si se toma el valor negativo del valor absoluto del logaritmo en el paso III.

$\Large I:\left \{ x\epsilon \mathbb{R}\mid -1< x< 1 \right \}$

Recordar:

Fraciones parciales

$\frac{1}{{{x}^{2}}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$=A\left( x+1 \right)+B(x-1)$

$=Ax+A+Bx-B$

$=(A+B)x+A-B$

Igualando los términos semejantes de la derecha con los de la izquierda.

No hay términos en “x” así que:

$A+B=0$ $\Rightarrow A=-B$

Para las variables A, B solas, está el “1”

$A-B=1$  $\Rightarrow A=1+B$

Por tanto:

$-B=1+B$

$2B=-1$

$B=-\frac{1}{2}$ $\Rightarrow A=\frac{1}{2}$

De donde:

$\frac{1}{{{x}^{2}}-1}=\frac{\frac{1}{2}}{x-1}-\frac{\frac{1}{2}}{x+1}$

$\frac{1}{{{x}^{2}}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_________________________________________________

Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

Ecuacion Diferencial lineal homogenea y no homogenea

Con el método de los 4 pasos podrás resolver cualquier ED lineal de 1er orden.

Te recomiendo que uses el método varias veces para resolver cualquier ecuacion diferencial lineal homegenea y no homogenea, usándolo antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito.

Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias. Espero te sirva.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 23). Tomado de: Dennis G. Zill Ed 7ma.

$x\frac{dy}{dx}+\left( 3x+1 \right)y={{e}^{-3x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de $P\left( x \right)dx$en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$P(x)=2x-1$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{3x+1}{x}dx}}={{e}^{3\mathop{\int }^{}dx+\mathop{\int }^{}\frac{1}{x}dx}}$

$={{e}^{3x+\ln x}}$

$=\text{x}{{e}^{3x}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\left( 3x+1 \right)}{x}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{3x+1}{x}dx}}$

$=C{{e}^{-3\mathop{\int }^{}dx-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-3x-\ln x}}$

$=C{{e}^{-3x+\ln {{x}^{-1}}}}$

$=C{{x}^{-1}}{{e}^{-3x}}$

$=\frac{C{{e}^{-3x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular ${{y}_{c1}}=-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}$ donde $C=-{{e}^{\frac{3}{2}}}$. Notar que la función ${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$ , tiene como dominio más largo el intervalo: $0<x<\infty $.

El intervalo más largo de definición de UNA solución es: $(0~,\infty )$, aunque el intervalo para la función es: $y:\{x\in \mathbb{R}-\left( 0 \right)\}$, o dicho de otra forma más sencilla, el valor de la función $y$, es: $\left( -\infty ,0 \right);(0,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}Q\left( x \right)dx}}=\text{x}{{e}^{3x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-3x}}}{x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}x{{e}^{3x}}(\frac{{{e}^{-3x}}}{x})dt$

$=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}dx$

$=\frac{1}{x{{e}^{3x}}}[x]$

$={{e}^{-3x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular $y\left( x \right)={{\text{e}}^{-3x}}-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}-\frac{{{\text{e}}^{-3x}}}{2x}$, Donde: $C=-\frac{1}{2}-{{e}^{\frac{3}{2}}}$. Nuevamente notar que la función $y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$ , tiene como dominio el intervalo (más largo): 0 Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, es:

$\Large y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Ecuacion diferencial lineal homegenea y no homogenea (Conceptos a recordar)

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

______________________________________________________________________________________________________________________________________________________________________________________________________