Funcion Error: solución de una Ecuacion Diferencial expresada como Función Error

Funcion Error. Cómo utilizar la funcion error $ \text{erf}\left( x \right)$ , para expresar una solución o función que incluya una integral no elemental.

Al finalizar  el artículo podrás utilizar y entender fácilmente cómo implementar la función error para expresar funciones con integrales no elementales.

La utilidad de ésta función (error) es despejar nuestra función de salida de la integral no elemental; esto lo logramos mediante recordar que:

$\huge \underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{x}^{2}}}}\text{d}x=\sqrt{\pi }$(1)

Lo cual sabemos del cálculo multivariable y que podemos integrar utilizando integrales dobles y un cambio de variables a coordenadas polares para comprobar, siga este link.

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 37).

De modo que si tomamos la mitad de la función en (1), tenemos:

$\frac{\sqrt{\pi }}{2}=\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{x}^{2}}}}\text{d}x$(2)

Por tanto, utilizando la propiedad de la unión de intervalos:

$\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{x}^{2}}}}\text{d}x=\underset{0}{\overset{x}{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t+\underset{x}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t=\frac{\sqrt{\pi }}{2}$(3)

Y de (2) y (3), tenemos:

$\Rightarrow \frac{2}{\sqrt{\pi }}\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{x}^{2}}}}\text{d}x=\frac{2}{\sqrt{\pi }}\left( \underset{0}{\overset{x}{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t+\underset{x}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-t}}\text{d}{{t}^{2}} \right)=1$

$=\frac{2}{\sqrt{\pi }}\underset{0}{\overset{x}{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t+\frac{2}{\sqrt{\pi }}\underset{x}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t=1$

De donde obtenemos las siguiente definiciones:

FUNCION ERROR:

$\text{e}rf\left( x \right)=\frac{2}{\sqrt{\pi }}\underset{0}{\overset{x}{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t$(4)

FUNCION ERROR COMPLEMENTARIA:

$\text{e}rfc\left( x \right)=\frac{2}{\sqrt{\pi }}\underset{x}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t$(5)

Una opción alterna para relacionar la ecuación (2) con las integrales no elementales, es:

$\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{x}^{2}}}}\text{dx}$ es equivalente a $\underset{x\to \infty }{\mathop{\lim }}\,\underset{0}{\overset{x}{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t=\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t$

Donde, habiendo considerado la veracidad de la ecuación (2), solo reataría comprobar que:

$\underset{0}{\overset{\infty }{\mathop \int }}\,{{\text{e}}^{-{{t}^{2}}}}\text{d}t=\frac{\sqrt{\pi }}{2}$(6)

Una vez explicado brevemente (y de una manera para invocar la intuición) el origen de la función error, procedemos igual que siempre a solucionar nuestra ED lineal por medio de los 4 pasos:

Tenemos:

Encontrar la solución del PVI:

$ \Large {{y}^{\prime }}-2xy=1$,        $\Large y\left( 1 \right)=1$

Buscamos:

Solución en términos de la función error.

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 37).

Pasos:

I. Forma estándar de la ED a resolver: $\frac{\text{d}y}{\text{d}x}+p\left( x \right)y=f(x)$ Sigue leyendo

Intervalo de solucion: ¿Cómo encontrarlo en un Problema del Valor Inicial(PVI)?

Encontrar la solución y el intervalo más largo I (intervalo de solucion), para el Problema del Valor inicial(PVI):

a)      $\left( x+1 \right)\frac{dy}{dx}+y=\ln x$,             $y(1)=10$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 29).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que $f(x)$ , es una constante.

$\frac{dy}{dx}+P(x)y=f(x)$

$\frac{dy}{dx}+\frac{1}{x+1}y=\frac{\ln x}{x+1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\frac{1}{x+1}$.

${{e}^{\mathop{\int }^{}\frac{1}{x+1}dx}}={{e}^{\ln (x+1)}}$

$ =\text{x}+1$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dy}{dx}+\frac{1}{x+1}y=0$. Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\frac{1}{x+1}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{1}{x+1}dx}}$

$=C{{e}^{-\ln (x+1)}}$

$=C{{e}^{-\ln (x+1)}}$

$=C{{e}^{\ln {{(x+1)}^{-1}}}}$

$=C{{(x+1)}^{-1}}$

$=\frac{C}{(x+1)}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $x=1;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }y=10$ , de modo que:

Sustituyendo en:

${{y}_{c}}=\frac{C}{x+1}$

Tenemos:

$10=\frac{C}{1+1}~\Rightarrow ~~C=\left( 2 \right)10~\Rightarrow C=20$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

${{y}_{c1}}=\frac{20}{x+1}$

Grafica de la familia de soluciones del sistema homogéneo asociado:

${{y}_{c}}=\frac{C}{x+1}$ y la solución particular  ${{y}_{c1}}=\frac{20}{x+1}$

intervalo de solucion del problema de valores iniciales

La función $y_{c}=\frac{C}{x+1}$ , tiene como dominio más largo el intervalo: $D_{y_{c}}:\left \{x \epsilon R | -1x<\infty \right \}$. Por tanto, la solución particular $y_{c1}=\frac{20}{x+1}$, tiene el mismo dominio: $D_{{y}_{c1}}:\left\{ x\in R |-1<x<\infty \right\}$, también. Es decir, el dominio de las funciones abarca todos los números reales. El valor de $C=20$ , para la solución particular del PVI $\frac{dy}{dx}+\frac{1}{x+1}y=0$$y(1)=10$. Ver de dónde sale el dominio de la función solución del PVI, analizando cada gráfica que ésta contiene, al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{1}{x+1}y=\frac{\ln x}{x+1}$. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}={{e}^{-kt}}$ (obtenido en el punto ii.) y $f\left( t \right)=\frac{1}{x+1}$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo

${{y}_{p}}=\frac{1}{\text{x}+1}\mathop{\int }^{}\text{x}+1(\frac{\ln x}{x+1})dx$

$=\frac{1}{\text{x}+1}\mathop{\int }^{}\ln xdx$

Utilizando, integración por partes:

$u=\ln x~~~~;~~~~~~~~dv=dx$

$du=\frac{dx}{x}~~~~~~;~~~~~~~~v=x$

Por tanto:

$=\frac{1}{\text{x}+1}[x\ln x-\mathop{\int }^{}x\frac{dx}{x}]$

$=\frac{1}{\text{x}+1}[x\ln x-\mathop{\int }^{}dx]$

$=\frac{1}{\text{x}+1}[x\ln x-x]$

$=\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “x” e “y”, que vienen como condiciones iniciales y despejando “C”.

$x=1;~~~~~~y=10$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Entonces, sustituyendo los valores iniciales
$y\left( 1 \right)=10$

Tenemos:

$10=\frac{C}{1+1}+\frac{1\ln 1}{1+1}-\frac{1}{1+1}$

$\Rightarrow 10=\frac{C}{2}+\frac{1\ln 1}{2}-\frac{1}{2}$

$\Rightarrow 10=\frac{C+1\ln 1-1}{2}$

$\Rightarrow 20=C+1\ln 1-1$

$\Rightarrow 20+1=C+1\ln 1$

$\Rightarrow 21=C+\ln {{1}^{1}}$

$\Rightarrow 21=C+0$

$\Rightarrow C=21$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

y la solución particular del PVI:
$y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$

intervalo de solucion del problema de valores iniciales

El dominio de la solución $y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$ está en el intervalo: ${{D}_{y(x)}}:0<x<\infty$ . O dicho de forma más común, el dominio de la solución del PVI ($\left( x+1 \right)\frac{dy}{dx}+y=\ln x$,   $y(1)=10$), es el intervalo abierto: $(0,\infty )$, ver que el cero no se incluye en el intervalo solución. Notar que el valor de $C=21$ , para el problema del PVI, acá mostrado. Ver al final el desglose de los dominios de cada una de las gráficas que incluye la función solución del PVI (sistema no homogéneo).

Por tanto, la solución del Problema del Valor Inicial: 

$\left( x+1 \right)\frac{dy}{dx}+y=\ln x$, $y(1)=10$, es,

$\large y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$

Con intervalo de solución:

$I:\left \{ x\epsilon R|0 < x < \infty\right\}$

Si analizamos la función Solución General $y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$, por separado viendo que: $f\left( x \right)=-\frac{x}{1+x}$ ,   $g\left( x \right)=\frac{C}{1+x}$  y  $h\left( x \right)=\frac{x\text{Log}(x)}{1+x}$, podemos notar más evidentemente cual es el dominio de ésta, al notar con mayor claridad el dominio de cada una de sus componentes particulares.

A continuación ponemos las gráficas de cada una de las funciones que conforman la solución del PVI para el sistema NO Homogéneo, por separado y luego en conjunto, para analizar con más cercanía por qué el intervalo de solución se reduce a $latex (0,\infty )$:

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{f(x)}:x\in \mathcal{R}-\{-1\}$, es decir, son todos los números reales exceptuando “-1”.

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{g(x)}:x\in \mathcal{R}-\{-1\}$, es decir, son todos los números reales exceptuando “-1”. Como sabemos ésta parte de la solución del PVI, es la solución general del sistema homogéneo, que incluye a la gráfica anterior $f(x)$.

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{y(x)}:0<x<\infty$, es decir, son todos los números reales exceptuando los negativos y el CERO. Esto se debe a que la función “Logaritmo Natural”, no está definida para cero: ($\ln 0=\infty$).

Esto se pone en mayor evidencia si evaluamos la siguiente función:

intervalo de solucion del problema de valores iniciales

intervalo de solucion del problema de valores iniciales

Por último, Vemos que la forma de la gráfica solución la da las funciones $g\left( x \right)=\frac{C}{1+x}$Y $h\left( x \right)=\frac{x\ln x}{1+x}$, que al agregarles la función $f\left( x \right)=-\frac{x}{1+x}$, solo termina desplazándola un poco hacia abajo.

Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos, ver el Problema 30,

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Ecuacion Diferencial lineal Homogenea y su sistema no homogeneo

Ecuacion Diferencial lineal homogénea y su sistema no homogéneo; de 1er orden

Con el método de los 4 pasos que puedes encontrar en este link: ED lineal de 1er orden, click aquí, podrás resolver cualquier ecuacion diferencial lineal homogenea.

Te recomiendo que uses el método varias veces antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito. Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias Ver el siguiente link: Learn More, Study Less: The Video Course. Se que les servirá mucho.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 24). Tomado de: Dennis G. Zill Ed 7ma.

$({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$ , que es “$(x^{2} – 1)$ ”, los coeficientes de los demás términos de la ecuación que dependen de “$x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{{{(x+1)}^{2}}}{(x-1)(x+1)}$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Sustituimos el valor de P($x$) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{2}{{{x}^{2}}-1}$. El desarrollo de la las fracciones parciales se muestra al final del ejercicios, así como las formulas integrales y el manejo de las funciones trascendentes.

${{e}^{2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}={{e}^{2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$={{e}^{2\mathop{\int }^{}\frac{dx}{2\left( x-1 \right)}-2\mathop{\int }^{}\frac{dx}{2\left( x+1 \right)}}}$

$={{e}^{\mathop{\int }^{}\frac{dx}{\left( x-1 \right)}-\mathop{\int }^{}\frac{dx}{\left( x+1 \right)}}}$

$={{e}^{\ln |x-1|-\ln |x+1|}}$

$={{e}^{\ln \frac{|x-1|}{|x+1|}}}$

$=\frac{x-1}{x+1}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=0$. Sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{2}{{{x}^{2}}-1}$, encontrado en el primer paso,  y desarrollamos. Notar que el resultado de ${{y}_{c}}$, es el recíproco del factor integrante multiplicado por C. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}$

$=C{{e}^{-2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$=C{{e}^{-\ln \left| x-1 \right|+\ln |x+1|}}$

$=C{{e}^{\ln \frac{|x+1|}{|x-1|}}}$

$=C\frac{x+1}{x-1}$

Gráfica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=C\frac{x+1}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular ${{y}_{c1}}=\frac{2(x+1)}{x-1}$ donde $C=2$. Notar que la función ${{y}_{c}}=C\frac{x+1}{x-1}$  , tiene como dominio más largo el intervalo: $1<x<\infty $. Sin embargo, debido a la no definición de la gráfica en $-1 < x < 1$, se puede tomar éste intervalo para hacer evidente ésta no definición. El intervalo más largo de definición de UNA solución es: $(1, \infty )$. El intervalo de definición de una solución, por definición (ver: Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{x-1}{x+1}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x+1}{x-1}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo.

${{y}_{p}}=\frac{x+1}{\text{x}-1}\mathop{\int }^{}\frac{x-1}{x+1}(\frac{x+1}{x-1})dx$

$=\frac{x+1}{\text{x}-1}\mathop{\int }^{}dx$

$=\frac{x+1}{\text{x}-1}[x]$

$=\frac{x(x+1)}{\text{x}-1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular $\text{y}\left( \text{x} \right)=\frac{(x+1)(2+x)}{x-1}$,

Donde: $C=2$. Nuevamente notar que la función $y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$ , tiene como dominio el intervalo: $(-1,1)$ y como dominio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$, es:

$y=\frac{(c+x)(x+1)}{x-1}$

Con intervalo de solución:

Nota: $latex c$ puede ser negativa si se toma el valor negativo del valor absoluto del logaritmo en el paso III.

$\Large I:\left \{ x\epsilon \mathbb{R}\mid -1< x< 1 \right \}$

Recordar:

Fraciones parciales

$\frac{1}{{{x}^{2}}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$=A\left( x+1 \right)+B(x-1)$

$=Ax+A+Bx-B$

$=(A+B)x+A-B$

Igualando los términos semejantes de la derecha con los de la izquierda.

No hay términos en “x” así que:

$A+B=0$ $\Rightarrow A=-B$

Para las variables A, B solas, está el “1”

$A-B=1$  $\Rightarrow A=1+B$

Por tanto:

$-B=1+B$

$2B=-1$

$B=-\frac{1}{2}$ $\Rightarrow A=\frac{1}{2}$

De donde:

$\frac{1}{{{x}^{2}}-1}=\frac{\frac{1}{2}}{x-1}-\frac{\frac{1}{2}}{x+1}$

$\frac{1}{{{x}^{2}}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_________________________________________________

Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

Ecuacion Diferencial lineal homogenea y no homogenea

Con el método de los 4 pasos podrás resolver cualquier ED lineal de 1er orden.

Te recomiendo que uses el método varias veces para resolver cualquier ecuacion diferencial lineal homegenea y no homogenea, usándolo antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito.

Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias. Espero te sirva.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 23). Tomado de: Dennis G. Zill Ed 7ma.

$x\frac{dy}{dx}+\left( 3x+1 \right)y={{e}^{-3x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de $P\left( x \right)dx$en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$P(x)=2x-1$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{3x+1}{x}dx}}={{e}^{3\mathop{\int }^{}dx+\mathop{\int }^{}\frac{1}{x}dx}}$

$={{e}^{3x+\ln x}}$

$=\text{x}{{e}^{3x}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\left( 3x+1 \right)}{x}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{3x+1}{x}dx}}$

$=C{{e}^{-3\mathop{\int }^{}dx-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-3x-\ln x}}$

$=C{{e}^{-3x+\ln {{x}^{-1}}}}$

$=C{{x}^{-1}}{{e}^{-3x}}$

$=\frac{C{{e}^{-3x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular ${{y}_{c1}}=-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}$ donde $C=-{{e}^{\frac{3}{2}}}$. Notar que la función ${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$ , tiene como dominio más largo el intervalo: $0<x<\infty $.

El intervalo más largo de definición de UNA solución es: $(0~,\infty )$, aunque el intervalo para la función es: $y:\{x\in \mathbb{R}-\left( 0 \right)\}$, o dicho de otra forma más sencilla, el valor de la función $y$, es: $\left( -\infty ,0 \right);(0,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}Q\left( x \right)dx}}=\text{x}{{e}^{3x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-3x}}}{x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}x{{e}^{3x}}(\frac{{{e}^{-3x}}}{x})dt$

$=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}dx$

$=\frac{1}{x{{e}^{3x}}}[x]$

$={{e}^{-3x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular $y\left( x \right)={{\text{e}}^{-3x}}-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}-\frac{{{\text{e}}^{-3x}}}{2x}$, Donde: $C=-\frac{1}{2}-{{e}^{\frac{3}{2}}}$. Nuevamente notar que la función $y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$ , tiene como dominio el intervalo (más largo): 0 Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, es:

$\Large y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Ecuacion diferencial lineal homegenea y no homogenea (Conceptos a recordar)

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

______________________________________________________________________________________________________________________________________________________________________________________________________