Ecuacion Diferencial autonoma de primer orden

Ecuacion diferencial autonoma de primer orden

En este artículo aprenderás de manera clara y sencilla cuando una Ecuacion Diferencial (ED) ordinaria de primer orden es autonoma, y marcaremos con precisión su forma general, para saber cuándo nos encontramos frente a una de ellas.

Este es un ejercicio resuelto extraído de:

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 38).

Lea el siguiente análisis y construya una ecuación diferencial lineal de primer orden para la que todas las soluciones no constantes tienden a la asíntota horizontal $y = 4$  conforme $x \rightarrow \infty$ .

ANÁLISIS:

La solución de una ecuación diferencial :

$\frac{\text{d}y}{\text{d}x}-3y=6$ …………………….(1)

Es la suma de dos soluciones:

$y=y_{c}+y_{p}$

Donde:

$y_{C}=C{{\text{e}}^{3x}}$ , es la solución homogénea del (1).

$y_{p}=-2$ es una solución particular de la ecuación no homogénea: $y’-3y=6$ .


(Se puede verificar estos resultados aplicando el Método de los 4 pasos, aquí hay un ejemplo de la aplicación del método, da click aquí, o mejor aún se puede utilizar el método de separación de variables, ver más adelante un ejemplo de solución con este último método)

Ecuación diferencial autonoma y la forma estándar de una ED

Cuando $a_{1}{(x)}, a_{0}{(x)}$ y $g{(x)}$ son constantes en la siguiente ecuación:$a_{1}\left( x \right)\frac{\text{d}y}{\text{d}x}+a_{0}\left( x \right)y=g\left( x \right)$ (FormaestándardeunaED de 1er orden),

La ecuación diferencial es autonoma.

Dicho de otra forma, una ecuación diferencial ordinaria en la que la variable independiente no aparece explícitamente se llama ecuación diferencial autonoma.

En la ecuación diferencial (1), al escribirla en la forma: $\frac{\text{d}y}{\text{d}x}=3\left( x+2 \right)$, podemos ver que $-2$, es un punto crítico y que es inestable (un repulsor); esto es más claro, si vemos la gráfica de la ED para diferentes valores de  de $C$, de su solución: $y\left( x \right)=-2+C{{\text{e}}^{3x}}$.

Valores para CValores de y(x)
-80-2-80 E^(3 x)
-20-2-20 E^(3 x)
-5-2-5 E^(3 x)
-1-2-E^(3 x)
-0.1-2-0.1 E^(3 x)
-0.01-2-0.01 E^(3 x)
-0.001-2-0.001 E^(3 x)
-0.0001-2-0.0001 E^(3 x)
-0.00001-2-0.00001 E^(3 x)
0-2
0.00001-2+0.00001 E^(3 x)
0.0001-2+0.0001 E^(3 x)
0.001-2+0.001 E^(3 x)
0.01-2+0.01 E^(3 x)
0.1-2+0.1 E^(3 x)
1-2+E^(3 x)
5-2+5 E^(3 x)
20-2+20 E^(3 x)
80-2+80 E^(3 x)
ecuacion diferencial autonoma de primer orden

Ecuacion Diferencial autonoma de primer orden

Gráfica de algunas de las soluciones de la ED (autónoma): $y’-3y=6$. En esta gráfica se ve por qué el nombre de “repulsor” para el valor de $y=-2$. Las curvas por arriba del punto crítico: $y=-2$, son independientes de las curvas solución que pasan por debajo de dicho punto.

En esta gráfica se puede ver como cualquiera de las curvas solución de la ED lineal $y’-3y=6$, que estén por arriba o por debajo del punto crítico (también llamado punto de equilibrio): $y=-2$, se alejan de esta recta horizontal, conforme $x\to \infty $ .

FIN DEL ANÁLISIS.

Ahora, el problema a plantear es:

CONSTRUIR UNA ED LINEAL DE PRIMER ORDEN PARA QUE TODAS LAS SOLICIONES NO CONSTANTES TIENDAN A LA ASÍNTOTA $y=4$ , CONFORME $x\to \infty $.

Sigue leyendo

Ecuacion Diferencial ejercicios resueltos Dennis G. Zill Capitulo 2.3 (10-11)

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Resolución de ED lineales Libro de Dennis G. Zill Ed 7ma.

Método: Factor Integrante

  1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$
  2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y= y_{c}+y_{p}$

3               ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4              ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problemas 10 al 12)

a)      $x{{y}^{‘}}+2y=3$

Pasos:

  1. $\frac{dy}{dx}+2\frac{y}{x}=\frac{3}{x}$
  2. ${{e}^{2\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{2\ln x}}={{e}^{\ln {{x}^{2}}}}={{x}^{2}}$
  3. ${{y}_{c}}=C{{e}^{-\ln {{x}^{2}}}}=C{{e}^{\ln {{x}^{-2}}}}=C{{x}^{-2}}=\frac{C}{{{x}^{2}}}$
  4. ${{y}_{p}}=\frac{1}{{{x}^{2}}}\mathop{\int }^{}{{x}^{2}}\left( \frac{3}{x} \right)dx$

$=\frac{1}{{{x}^{2}}}\mathop{\int }^{}3xdx$

$=\frac{3}{{{x}^{2}}}\mathop{\int }^{}xdx=\frac{3}{2{{x}^{2}}}{{x}^{2}}$

$=\frac{3}{2}$

Por tanto:

                          $y=\frac{C}{{{x}^{2}}}+\frac{3}{2}$

______________________________________________________________________________________

b)      $x{{y}^{‘}}+4y={{x}^{3}}-x$

Pasos:

  1. $\frac{dy}{dx}+\frac{4}{x}y={{x}^{2}}-1$
  2. ${{e}^{4\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{4\ln x}}={{e}^{\ln {{x}^{4}}}}={{x}^{4}}$
  3. ${{y}_{c}}=C{{e}^{-4\ln x}}$

$=C{{e}^{\ln {{x}^{-4}}}}$

$=C{{x}^{-4}}$

$=\frac{C}{{{x}^{4}}}$

4.   ${{y}_{p}}=\frac{1}{{{x}^{4}}}\mathop{\int }^{}{{x}^{4}}({{x}^{2}}-1)dx$

$=\frac{1}{{{x}^{4}}}\mathop{\int }^{}({{x}^{6}}-{{x}^{4}})dx$

$=\frac{1}{{{x}^{4}}}\mathop{\int }^{}{{x}^{6}}dx-\mathop{\int }^{}{{x}^{4}}dx$

$=\frac{1}{7{{x}^{4}}}{{x}^{7}}-\frac{1}{5{{x}^{4}}}{{x}^{5}}$

$=\frac{1}{7}{{x}^{3}}-\frac{1}{5}x$

Por tanto:

$y=\frac{C}{{{x}^{4}}}+\frac{1}{7}{{x}^{3}}-\frac{1}{5}x$

Te invito a que practiques la solución de problemas mediante los pasos aquí descritos y que puedes ver a detalle en el siguiente artículo: Método de 4 pasos para ED’s lineales.

La aplicación ordenada del conocimiento adquirido permite que desarrolles tu intuición al tener una estructura mental donde se pueda depositar nuevo conocimiento.

La intuición, es una parte de la inteligencia que toma el conocimiento de partes del cerebro que no son accesibles para el consciente, en esta parte se encuentra toda tu sabiduría, tu Genio Interno.

Para saber más sobre como desarrollar tu intuición y aprender Ecuaciones Diferenciales, te invito a leer el artículo: La Técnica Perfecta para Aprender Ecuaciones Diferenciales(da click aquí).

Te sirvió este artículo?

Quiero un Ejemplo de un circuito del tipo RLC  en serie

Quiero un ejemplo de un circuito  del tipo RC en serie

Quiero un ejemplo de un circuito RLC en paralelo

Cómo simulo problemas de Ecuaciones Diferenciales con Software libre y poderoso?

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. =)