Ecuacion diferencial lineal de primer orden ejemplos, Zill C. 2.3 (Prob 20)

Ecuacion diferencial lineal de primer orden ejemplos: El siguiente método te ayudará a resolver cualquier tipo de ecuacion diferencial lineal de primer orden mediante ejemplos en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Resolución de ED lineales Libro de Dennis G. Zill Ed 7ma.

Método: Factor Integrante

1. Forma Standard:  $ \frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: $ {{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

3.                                  $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$

4.                                  $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ecuacion diferencial lineal de primer orden ejemplos

Ejercicios 2.3 Libro Dennis G. Zill (Problema 20)

$ \large {{(x+2)}^{2}}\frac{dy}{dx}=5-8y-4xy$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $ \frac{dy}{dx}$   , que es “$ {{(x+2)}^{2}}$   ”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$ \frac{dy}{dx}+P\left( x \right)y=f(x)$

$ \frac{dy}{dx}+\frac{8}{{{(x+2)}^{2}}}y+\frac{4x}{{{(x+2)}^{2}}}y=\frac{5}{{{(x+2)}^{2}}}$

$ \frac{dy}{dx}+\frac{8+4x}{{{(x+2)}^{2}}}y=\frac{5}{{{(x+2)}^{2}}}$

$ \frac{dy}{dx}+\frac{4(2+x)}{(x+2)(x+2)}y=\frac{5}{{{(x+2)}^{2}}}$

$ \frac{dy}{dx}+\frac{4}{(x+2)}y=\frac{5}{{{(x+2)}^{2}}}$

II.                  En el segundo paso encontramos el factor integrante: $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de P(x) en $ {{e}^{{\int }^{}P\left( x \right)dx}}$   ,   donde:$ P(x)=\frac{4}{x+2}$   . Para recordar las formulas integrales y el manejo de las funciones trascendentes y la división entre polinomios, vea el final del ejercicio.

$ {{e}^{4{\int }^{}\frac{1}{x+2}dx}}={{e}^{4\ln (x+2)}}$

$ ={{e}^{\ln {{(x+2)}^{4}}}}$

$ ={{(\text{x}+2)}^{4}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$ \frac{dy}{dx}+\frac{4}{(x+2)}y=0$    . Para resolverla sustituimos en la fórmula: $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$   , los valores de $ P(x)=\frac{4}{x+1}$   , encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$   , siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{y}_{c}}=C{{e}^{-4{\int }^{}\frac{1}{x+1}dx}}$

$ =C{{e}^{-4\ln (x+2)}}$

$ =C{{e}^{\ln {{(x+2)}^{-4}}}}$

$ =C{{(\text{x}+2)}^{-4}}$

$ =\frac{C}{{{(x+2)}^{4}}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ \large {{y}_{c}}=\frac{C}{{{(x+2)}^{4}}}$

ecuacion diferencial lineal de primer orden ejemplos

Se puede ver una solución particular $ y=-\frac{243}{{{(2+x)}^{4}}}$    donde $ C=-243$   . Notar que la función $ {{y}_{c}}=\frac{C}{{{(x+2)}^{4}}}$, tiene como dominio más largo el intervalo: $ -2\le x\le \infty $    (analizar el denominador de la función $ \frac{C}{{{(x+2)}^{4}}}$, (notar que el intervalo $ -\infty \le x\le -2$    , es menor que el mencionado. El intervalo más largo de definición de UNA solución es: $ (-2~,\infty )$   . El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $ \frac{dy}{dx}+\frac{4}{(x+2)}y=\frac{5}{{{(x+2)}^{2}}}$   , que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$   , donde: $ {{e}^{{\int }^{}P\left( x \right)dx}}=\frac{4}{(x+2)}$    (obtenido en el punto ii.) y $ f\left( x \right)=\frac{5}{{{(x+2)}^{2}}}$    obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{{{(x+2)}^{4}}}{\int }^{}{{(x+2)}^{4}}\frac{5}{{{(x+2)}^{2}}}dx$

$ =\frac{5}{{{(x+2)}^{4}}}{\int }^{}{{(x+2)}^{2}}dx$

$ =\frac{5}{{{(x+2)}^{4}}}{\int }^{}({{x}^{2}}+4x+4)dx$

$ =\frac{5}{{{(x+2)}^{4}}}{\int }^{}{{x}^{2}}dx+4{\int }^{}xdx+4{\int }^{}dx$

$ =\frac{5}{{{\left( x+2 \right)}^{4}}}(\frac{{{x}^{3}}}{3}+4\frac{{{x}^{2}}}{2}4x)$

$ =\frac{5{{x}^{3}}}{3{{\left( x+2 \right)}^{4}}}+\frac{10{{x}^{2}}}{{{\left( x+2 \right)}^{4}}}+\frac{20x}{{{(x+2)}^{4}}}$

$ =(\frac{5x}{{{\left( x+2 \right)}^{4}}})(\frac{1}{3}{{x}^{2}}+2x+4)$

$ =\frac{5x({{x}^{2}}+6x+12)}{3{{\left( x+2 \right)}^{4}}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ y=\frac{C}{{{(x+2)}^{4}}}+\frac{5x({{x}^{2}}+6x+12)}{3{{\left( x+2 \right)}^{4}}}$

ecuacion diferencial lineal de primer orden ejemplos

Se puede ver una solución particular $ y\left( x \right)=-\frac{824}{3{{(2+x)}^{4}}}+\frac{20x}{{{(2+x)}^{4}}}+\frac{10{{x}^{2}}}{{{(2+x)}^{4}}}+\frac{5{{x}^{3}}}{3{{(2+x)}^{4}}}$, Donde: $ C=-\frac{824}{3}$. Nuevamente notar que la función $ y=\frac{C}{{{(x+2)}^{4}}}+\frac{5x({{x}^{2}}+6x+12)}{3{{\left( x+2 \right)}^{4}}}$, tiene como dominio el intervalo (más largo): $ (-2~,\infty )$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ ({{(x+2)}^{2}}\frac{dy}{dx}=5-8y-4xy$, es:

$ \LARGE y=\frac{C}{{{(x+2)}^{4}}}+\frac{5x({{x}^{2}}+6x+12)}{3{{\left( x+2 \right)}^{4}}}$

Ecuacion diferencial lineal de primer orden ejemplos (Repasos)

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$    implica  $ x=\ln y$    y además $ \ln y= \log_{e}y$ recordamos que la función $ x=\log_{e}y$   , es inversa de $ y=e^{x}$   , por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$      y

$ {{e}^{x}}={{e}^{\ln y}}=y$

Factorización

$ \left( \frac{5x}{{{\left( x+2 \right)}^{4}}} \right)\left( \frac{1}{3}{{x}^{2}}+2x+4 \right)=\left( \frac{5x}{{{\left( x+2 \right)}^{4}}} \right)\left( \frac{{{x}^{2}}+6x+12}{3} \right)=\frac{5x({{x}^{2}}+6x+12)}{3{{\left( x+2 \right)}^{4}}}$

$ \frac{1}{3}{{x}^{2}}+2x+4=\frac{{{x}^{2}}+6x+12}{3}$


Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

El siguiente problema de Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19, se desarrolla el método que proponemos para resolver cualquier ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método: Factor Integrante

1. Forma Standard:  $ \frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: $ {{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

3.                                   $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$

4.                                   $x {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

$ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $ \frac{dy}{dx}$, que es “$ x+1$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$ \frac{dy}{dx}+P\left( x \right)y=f(x)$

$ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$

II.                    En el segundo paso encontramos el factor integrante:

 $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

Para esto sustituimos el valor de $P(x)$ en $ {{e}^{{\int }^{}P\left( x \right)dx}}$,   donde:$ P(x)=\frac{x+2}{x+1}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y la división entre polinomios, vea el final del ejercicio.

$ {{e}^{{\int }^{}\frac{x+2}{x+1}dx}}={{e}^{{\int }^{}\text{dx}+{\int }^{}\frac{1}{x+1}dx}}$

$ ={{e}^{x+\ln (x+1)}}$

$ ={{e}^{x}}{{e}^{\ln (x+1)}}$

$ =\left( \text{x}+1 \right){{e}^{x}}$

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$ \frac{dy}{dx}+\frac{x+2}{x+1}y=0$ . Para resolverla sustituimos en la fórmula: $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, los valores de $ P(x)=\frac{x+2}{x+1}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{y}_{c}}=C{{e}^{-{\int }^{}\frac{x+2}{x+1}dx}}$

$ =C{{e}^{{\int }^{}\text{dx}-{\int }^{}\frac{1}{x+1}dx}}$

$ =C{{e}^{-\text{x}-\ln (x+1)}}$

$ =C{{e}^{-\text{x}+\ln {{(x+1)}^{-1}}}}$

$ =C{{e}^{-\text{x}}}{{e}^{\ln {{(x+1)}^{-1}}}}$

$ =C{{(x+1)}^{-1}}{{e}^{-\text{x}}}$

$ =C\frac{{{e}^{-\text{x}}}}{(x+1)}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $ y=-\frac{6{{e}^{1-x}}}{1+x}$ donde $ C=-6e$. Notar que la función
$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$ , tiene como dominio el intervalo: $ -1\le x\le \infty $ (analizar el denominador de la función $ \frac{C{{e}^{-\text{x}}}}{(x+1)}$, pues aunque se nota una gráfica que aparece antes de -1 (gráfica en verde), esta también está indefinida en -1, por eso el intervalo más largo de definición de UNA solución es: $ (-1~,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: $ {{e}^{{\int }^{}P\left( x \right)dx}}=\left( \text{x}+1 \right){{e}^{x}}$ (obtenido en el punto ii.) y $ f\left( x \right)=\frac{2x{{e}^{-x}}}{x+1}$ obtenido en el punto iPara ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}\left( \text{x}+1 \right){{e}^{x}}\frac{2x{{e}^{-x}}}{x+1}dx$

$ =\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}2xdx$

$ =\frac{2}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}xdx$

$ =\frac{2}{2\left( \text{x}+1 \right){{e}^{x}}}{{x}^{2}}$

$ =\frac{{{x}^{2}}{{e}^{-x}}}{\left( \text{x}+1 \right)}$

Gráfica de la familia de soluciones del sistema no homogeneo:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $y\left( x \right)=-\frac{6{{\text{e}}^{1-x}}}{1+x}-\frac{{{\text{e}}^{-x}}}{1+x}+\frac{{{\text{e}}^{-x}}{{x}^{2}}}{1+x}$, Donde: $ C=-1-6e$. Nuevamente notar que la función $ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$ , tiene como dominio el intervalo: $ (-1~,\infty )$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$, es:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

 

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

División entre Polinomios

$ \frac{x+2}{x+1}=1+\frac{1}{x+1}$

Ya que:

$ x+1\overset{1}{\overline{\left){\frac{x+2}{\frac{-x-1}{1}}}\right.}}$

Lo que intenté escribirles es el algoritmo de la división, el “1”en la parte superior (sobre la “x”), es el entero resultante de dividir $ \frac{x}{x}=1$, este es el “1” que usamos como parte del resultado, la línea debajo de $ x+2$, es el resultado de multiplicar el “1” de la parte superior por $ x+1$ e ir acomodando los términos debajo de sus correspondiente del dividendo, que en este caso es el mencionado término: $ x+2$, al final, al cambiarle los signos a este resultado y sumarlos al mismo dividendo vemos que: $ x+2-x-1=1$, este “1” es el que aparece hasta abajo, es el residuo, el cual es, junto con el divisor, la fracción: $ \frac{1}{x+1}$, sumada al final.

 

 


Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill, Capítulo 2.3 (Problema 18)

Ecuación diferencial, ejercicios resueltos del libro: Dennis G. Zill 7ª Ed.

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método de resolución de ED lineales

A continuación describimos el método para solución de cualquier ecuación diferencial lineal mediante 4 apsos sencillos. Una explicación más detallada de de éste método la puedes encontrar en el siguiente enlace: Método: Factor Integrante, click aquí

1. Forma Standard:  $ \frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: $ {{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

3.                                  $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$

4.                                  $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill, Cap 2.3 Problema 18

$ {{\cos }^{2}}x\sin x\frac{dy}{dx}+\left( {{\cos }^{3}}x \right)y=1$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $ \frac{dy}{dx}$, que es “$ {{\cos }^{2}}x~\sin x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

Las identidades trigonométricas las presento al final del ejercicio.

$ \frac{dy}{dx}+P\left( x \right)y=f(x)$

$ \frac{dy}{dx}+\frac{{{\cos }^{3}}x}{{{\cos }^{2}}x~\sin x}y=\frac{1}{{{\cos }^{2}}x~\sin x}$

$ \frac{dy}{dx}+\frac{\cos x}{~\sin x}y=\frac{1}{{{\cos }^{2}}x~\sin x}$

$x \frac{dy}{dx}+(\cot x)y={{\sec }^{2}}x\csc x$

II.                    En el segundo paso encontramos el factor integrante: $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

Para esto sustituimos el valor de P(x) en $ {{e}^{{\int }^{}P\left( x \right)dx}}$,   donde:$ P(x)=cotx$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

$ {{e}^{{\int }^{}\cot xdx}}={{e}^{\ln (\sin x)}}$

$ =\sin x$

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$ \frac{dy}{dx}+(\cot x)y=0$ . Para resolverla sustituimos en la fórmula: $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, los valores de $ P(x)=\cot x)$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{y}_{c}}=C{{e}^{-{\int }^{}\cot xdx}}$

$ =C{{e}^{-\ln (\sin x)}}$

$ =C{{e}^{\ln {{(\sin x)}^{-1}}}}$

$ =\frac{C}{\sin x}$

$ =C\csc x$

 Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=\frac{C}{\sin (x)}=C\csc (x)$

G. Zill, Cap 2.3 Problema 18

Se puede ver una solución particular $ y=-3\csc (x)\sin (1)$ donde $ C=-3\sin (1)$

Notar que la función
$ {{y}_{c}}=\frac{C}{sinx}$ , tiene como dominio todo el conjunto de los reales, con excepción de los valores de “x” que son múltiplos de  $ \frac{\pi }{2}$ en el sentido positivo y negativo, por eso el intervalo más largo de definición de UNA solución es: $ 0\le x\le \frac{\pi }{2}$. Esto implica que cada $ {{90}^{{}^\circ }}$ (o lo que es lo mismo, cada $ \frac{\pi }{2}$ radianes), $ {{y}_{c}}=\infty $. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo. Para este caso el intervalo más largo de solución es$ (0~,\frac{\pi }{2})$.

IV.                    En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $ \frac{dy}{dx}+(\cot x)y={{\sec }^{2}}x\csc x$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: $ {{e}^{{\int }^{}P\left( x \right)dx}}=\sin x$ (obtenido en el punto ii.) y $ f\left( x \right)={{\sec }^{2}}x\csc x$ obtenido en el punto iPara ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{\sin x}{\int }^{}\sin x({{\sec }^{2}}x\csc x)dx$

$ =\csc x{\int }^{}\sin x({{\sec }^{2}}x\frac{1}{\sin x})dx$

$ =\csc x{\int }^{}{{\sec }^{2}}xdx$

$ =\cos x\tan x$

$ =\frac{1}{\cos x}$

$ =\sec x$

Gráfica de la familia de soluciones del sistema no homogeneo:

$ y=Ccscx+secx$

G. Zill, Cap 2.3 Problema 18

Se puede ver una solución particular $ y\left( x \right)=\text{Sec}(x)-3\text{Csc}(x)\text{Sin}(1)-\text{Csc}(x)\text{Tan}(1)$,

Donde: $ C=3\sin (1)-\tan (1)$. Nuevamente notar que la función $ y=Ccscx+secx$ , tiene como dominio el intervalo: $ (0~,\frac{\pi }{2})$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

 Por tanto, la solución general de la ecuación diferencial $ {{\cos }^{2}}x\sin x\frac{dy}{dx}+\left( {{\cos }^{3}}x \right)y=1$, es:

$$ \Large y=Ccscx+secx$$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y=\log_{e}y$ recordamos que la función $ x=\log _{e}y$, es inversa de $ y=e^{x}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

Identidades Trigonométricas

$ \frac{1}{\cos x}=\sec x$,

$ \frac{\cos x}{\sin x}=\cot x$

$ \frac{1}{{{\cos }^{2}}x~}={{\sec }^{2}}x$

$ \frac{1}{\sin x}=\csc x$

Fórmulas de Integración

$ {\int }^{}\tan xdx=-\ln \cos x+C=\ln \sec x+C$

$ {\int }^{}\cot xdx=-\ln \sin x+C$


Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill, Capítulo 2.3 (Problema 17)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (Problema 17)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (Problema 17): el siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método de solución de ED lineales

A continuación describimos el método para solución de cualquier ecuación diferencial lineal mediante 4 apsos sencillos. Una explicación más detallada de de éste método la puedes encontrar en el siguiente enlace: Método: Factor Integrante, click aquí

  1. Forma Standard: $\frac{dy}{dx}+P\left( x \right)y=f(x)$
  2. Factor Integrante: ${{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

  1. ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$
  2. ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problema 17)

$\cos x\frac{dy}{dx}+\left( \sin x \right)y=1$

Pasos:

I. El primer paso consiste en escribir la forma estándar de la ED a resolver:

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\sin x}{\cos x}y=\frac{1}{\cos x}$

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$\cos x$” , los coeficientes de los demás términos de la ecuación que dependen de “x”.

Por último agrupamos términos semejantes y simplificamos.

II. En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

${{e}^{{\int }^{}\frac{\sin x}{\cos x}dx}}={{e}^{{\int }^{}\tan xdx}}$

$={{e}^{-\ln (\cos x)}}$

$={{e}^{\ln {{(\cos x)}^{-1}}}}$

$={{(\cos x)}^{-1}}$

$=\frac{1}{\cos x}$

$=\sec x$

Para esto sustituimos el valor de P(x) en ${{e}^{{\int }^{}P\left( x \right)dx}}$,   donde: $P(x)=\frac{\sin x}{\cos x}=\tan x$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

III. Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\sin x}{\cos x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\sin x}{\cos x}=\tan x$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-{\int }^{}\tan xdx}}$

$=C{{e}^{\ln (\cos x)}}$

$=C\cos x$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$\large {{y}_{c}}=C\cos x$

Se puede ver una solución particular $y=-3\cos x\sec 1$ donde $C=-3\sec 1$

Notar que la función
${{y}_{c}}=C\cos x$ , tiene como dominio $-\frac{\pi }{2}<x<\frac{\pi }{2}$. Ya que cuando $x=\frac{\pi }{2}$, o un múltiplo entero de este, ${{y}_{c}}=0$ únicamente, es decir, ${{y}_{c}}$ no está definida para otro valor que no sea cero cuando “x” si lo es, por eso, para este caso el intervalo más largo de solución es $(-\frac{\pi }{2},\frac{\pi }{2})$.

. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\sin x}{\cos x}y=\frac{1}{\cos x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{{\int }^{}P\left( x \right)dx}}=\sec x$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{1}{\cos x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{\sec x}{\int }^{}\sec x(\frac{1}{\cos x})dx$

$=\frac{1}{\sec x}{\int }^{}{{(\sec x)}^{2}}dx$

$=\frac{1}{\sec x}(\tan x)$

$=\cos x(\frac{\sin x}{\cos x})$

$=\sin x$

Gráfica de la familia de soluciones del sistema no homogeneo:

$\large y=C~cosx+sinx$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 Problema 17

Se puede ver una solución particular $y\left( x \right)=-3\cos x\sec 1+\sin x-\cos x\tan 1$,

Donde: $C=-3\sec 1-\tan 1$. Nuevamente notar que la función $y=C~cosx+sinx$ , tiene como dominio el intervalo $~(-\frac{\pi }{2},\frac{\pi }{2})$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial

$\cos x\frac{dy}{dx}+\left( \sin x \right)y=1$, es:

$$\Large y=C\cos x+\sin x$$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 Problema 17

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Identidades Trigonométricas

$\frac{1}{\cos x}=\sec x$,

Fórmulas de Integración

${\int }^{}\tan xdx=-\ln \cos x+C=\ln \sec x+C$

Necesitas mas ejemplos?

Ve el siguiente ejemplo para reconocer la diferencial entre el intervalo de solución de una solución particular y el intervalo de solución de la función, solución general.

Otro caso de Intervalo de solución particular, donde la función solución general, tiene un intervalo diferente del intervalo de solución de una solución particular.

Ve al ejemplo siguiente: Ecuación diferencial capitulo-2.3 (Ecuaciones Diferenciales Lineales) del libro de Dennis G. Zil. Problema18

________________________________________

DE DONDE SALE EL FACTOR INTEGRANTE O FACTOR DE INTEGRACIÓN Y QUÉ ES

DE DONDE SALE EL FACTOR INTEGRANTE O FACTOR DE INTEGRACIÓN

de donde sale el factor integrante

Figura 1. Factor Integrante para Ecuaciones Diferenciales lineales de Primer Orden

Después de leer este artículo te será muy claro de dónde sale el factor integrante para resolver Ecuaciones Diferenciales (ED) Lineales de 1er Orden y podrás relacionarlo fácilmente con conocimiento previo que te permitirá recordar con facilidad el método.

Aprendiendo el método que utiliza el Factor Integrante para resolver una Ecuación Diferencial, podrás resolver cualquier ED lineal de 1er Orden, sin excepción. El método se resume al final.

Para desarrollar este tema haremos uso del siguiente método:

Relacionaremos la forma de la regla de derivación conocida como la «Regla del Producto» entre un producto de funciones con la forma Estándar de una Ecuación Diferencial Lineal de primer orden, con el fin de adecuar la segunda a la primera y así poder encontrar una función que permita integrar a la Ecuación Diferencial lineal, para conocer su solución integrando una forma conocida para nosotros proveniente de nuestro estudio del calculo Diferencial-Integral, la Regla del Producto.

Esta idea es fácilmente imaginable si se tiene en mente la forma de la Ecuación Diferencial Lineal y se tiene presente que una de las formas de encontrar la solución de un Ecuación Diferencial (la cual es una función), es utilizando las formas conocidas (ecuaciones) de derivación de funciones, ya que una Ecuación Diferencial es un conjunto de derivadas.

De esta forma, con nuestro conocimiento de Cálculo Integral podremos encontrar las antiderivadas de las formas conocidas de derivación.

En nuestro caso, como veremos más adelante, necesitaremos agregar una variable adicional a la forma estándar de la Ecuación Diferencial Lineal (la cual es una función que funge como factor que permite integrar la ecuación), para que la relación de ésta con la forma de la Regla del Producto sea evidente y así, poder integrar la ED lineal fácilmente.

A la función que funge como factor que permite adecuar la forma estándar de la Ecuación Diferencial Lineal a la forma de la «Regla del producto», se le conoce como factor integrante.

Regla del Producto y su forma diferencial

Bueno, entrando en materia, recordemos nuestras clases de cálculo diferencial-integral en la parte donde aprendimos a integrar mediante diferentes técnicas o artificios. Uno de esos artificios fue la Integración por Partes. Esta técnica la obtuvimos de una de las reglas de derivación llamada «Regla del Producto«, la cual dice:

La derivada de un producto de funciones es igual a la suma del producto de la primera función por la derivada de la segunda más el producto de la segunda función por la derivada de la primera.

Es decir, ésta regla nos describe cómo derivar el producto entre dos funciones, como sigue:

$\frac{d\left( uv \right)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$

(1)

Escribiendo esta última ecuación (1) en su forma diferencial para poder compararla con la forma estándar de una ED lineal, tenemos:

$d\left( uv \right)=udv+vdu$

(2)

Y, reagrupando esta última ecuación (2), podemos recurrir a la siguiente comparación, que nos ayudará para ver de donde sale el factor integrante:

  $udv+vdu=d(uv)$

(4)

Entonces, al comparar vemos que la ecuación (4) es parecida a:

  $\frac{dy}{dx}+P\left( x \right)y=f\left( x \right)$

(5)

Que es la FORMA ESTÁNDAR DE UNA ECUACIÓN DIFERENCIAL LINEAL DE PRIMER ORDEN.

COMPARACIÓN DE LA FORMA DE LA ECUACIÓN DE LA REGLA DEL PRODUCTO CON LA FORMA DE LA ECUACIÓN ESTÁNDAR DE UNA ECUACIÓN DIFERENCIAL LINEAL

La ecuación (4) es mas fácilmente comparable con (5) si escribimos esta última en su forma diferencial, es decir:

$dy+P\left( x \right)ydx=f(x)dx$

o mejor aún, si reagrupamos los términos:

$dy+yP\left( x \right)dx=f(x)dx$ (6)

Ahora, comparemos nuevamente (4) y (6):

$udv+vdu=d(uv)$ (4)
$dy+yP\left( x \right)dx=f(x)dx$ (6)

De ésta comparación podemos ver las similitudes y disimilitudes entre ellas que se exponen a continuación:

\begin{eqnarray}
u & & {No-tiene-igual}\\
d v & = & d y\\
v & = & y\\
du & = & {No-se-conoce-u}\\
f ( x) d x & = & d ( u v)
\end{eqnarray}

De aquí podemos notar que la $u$ de la ecuación (4) se queda sin una función similar en la ecuación (6), y que aunque la $du$ sabemos que incluye el término $P(x)dx$, como lo podemos ver en la siguiente Figura 1, no podemos igualarla a ese valor porque no sabemos si la inclusión de la variable $u$ (función $u$), modificaría su derivada $du$.

de donde sale el factor integrante

Figura 2. Similitudes entre la regla de la cadena para derivar un producto de dos funciones y la forma estándar de un Ecuación Diferencial Lineal de primer orden

El factor $u$ (función $u$) como factor integrante

De esta forma, podemos pensar que si completamos los términos faltantes para que (6) se parezca a (4), necesitaríamos encontrar una $u$, que al multiplicarla por la ecuación (6) nos de la forma de una derivación del producto de dos funciones, la cual está representada por la ecuación (4) o Regla del Producto.

Entonces multiplicando $u$ por la ecuación (6), tenemos:

$$udy+uyP\left( x \right)dx=uf(x)dx$$ Sigue leyendo