Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16): el siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Ecuación diferencial, ejercicios resueltos del libro: Dennis G. Zill 7ª Ed.

Método de resolución de ED lineales

A continuación describimos el método para solución de cualquier ecuación diferencial lineal mediante 4 apsos sencillos. Una explicación más detallada de de éste método la puedes encontrar en el siguiente enlace: Método: Factor Integrante, click aquí

1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y={{y}_{c}}+{{y}_{p}}$

3.                                  ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4.                                   ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problema 16)

a). $ydx=(y{{e}^{y}}-2x)dx$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

En este caso identificamos que la variable independiente es la que usualmente es la variable dependiente, es decir, “y” es la variable independiente y “x” es la dependiente. Esto lo podemos fácilmente notar en una ED lineal de 1er orden (expresada explícitamente), si nos percatamos de que el coeficiente que se encuentra al frente de la derivada de “dx” depende solo de una variable y esta es contraria a “x”.

$\frac{dx}{dy}+P\left( y \right)x=f(y)$

$y\frac{dx}{dy}=(y{{e}^{y}}-2x)$,

$\frac{dx}{dy}-\frac{(y{{e}^{y}}-2x)}{y}=0$

Dividimos, entonces, entre el coeficiente de , que es “y”[ecuación a)], los coeficientes de los demás términos de la ecuación que dependen de “y”.

Por último agrupamos términos semejantes y simplificamos.

$\frac{dx}{dy}-{{e}^{y}}+2\frac{x}{y}=0$

$\frac{dx}{dy}+\frac{2}{y}x={{e}^{y}}$

II.                    En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( \mathbf{y} \right)\mathbf{dy}}}$,  

Para esto sustituimos el valor de $P(y)$ en ${{e}^{\mathop{\int }^{}P\left( y \right)dy}}$,   donde:$P(y)$=$\frac{2}{y}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

${{e}^{2\mathop{\int }^{}\frac{dy}{y}}}={{e}^{2\ln y}}$

$={{e}^{\ln {{y}^{2}}}}$

$={{y}^{2}}$

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial: $\frac{dx}{dy}-\frac{4x}{y}=0$ . Para resolverla sustituimos en la fórmula: ${{x}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( y \right)dy}}$, los valores de $P(y)$=$ ~-\frac{4}{y}$, encontrado en el primer paso, con anterioridad,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{x}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( y \right)dy}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{x}_{c}}=C{{e}^{\left( – \right)2\mathop{\int }^{}\frac{dy}{y}}}$

$=C{{e}^{-2\ln y}}$

$=C{{e}^{\ln {{y}^{-2}}}}$

$=C{{y}^{-2}}$

$=\frac{C}{{{y}^{2}}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$\large {{x}_{c}}=\frac{C}{{{y}^{2}}}$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Notar que la función ${{x}_{c}}=\frac{C}{{{y}^{4}}}$ , tiene como dominio todo el conjunto de los números reales, excepto $x=0$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo. Para este caso el intervalo más largo de solución es $(-\infty ~,~0)$ ó $(0~,~\infty )$.

IV.                    En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dx}{dy}-\frac{4x}{y}=4{{y}^{5}}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $x_{p}=\frac{1}{e^{\int P\left ( y \right )dy}}\int e^{\int P\left ( y \right )dy}f\left ( y \right )dy$, donde: ${{e}^{\mathop{\int }^{}P\left( y \right)dy}}={{y}^{-4}}$ (obtenido en el punto ii.) y $f\left( y \right)=4{{y}^{5}}$, obtenido en el punto i. Notar que la fórmula: $x_{p}=\frac{1}{e^{\int P\left ( y \right )dy}}\int e^{\int P\left ( y \right )dy}f\left ( y \right )dy$,  es solo la contra parte de la fórmula: $y_{p}=\frac{1}{e^{\int P\left ( x \right )dx}}\int e^{\int P\left ( x \right )dx}f\left ( x \right )dx$, para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{x}_{p}}=\frac{1}{{{y}^{2}}}\mathop{\int }^{}{{y}^{2}}({{e}^{y}})dx$

$=\frac{1}{{{y}^{2}}}({{y}^{2}}{{e}^{y}}-2y{{e}^{y}}+2{{e}^{y}})$ *Ver desarrollo abajo

$={{e}^{y}}-2\frac{{{e}^{y}}}{y}+2\frac{{{e}^{y}}}{{{y}^{2}}}$

*Desarrollo:

$\mathop{\int }^{}{{y}^{2}}{{e}^{y}}dy$

$u={{y}^{2}}$ ;      $dv={{e}^{y}}dy$

$du=2ydy$ ;             $v={{e}^{y}}$

Por tanto:

$\mathop{\int }^{}{{y}^{2}}{{e}^{y}}dy={{y}^{2}}{{e}^{y}}-2\mathop{\int }^{}y{{e}^{y}}dy$

De nuevo, para $\mathop{\int }^{}y{{e}^{y}}dy$

$u={{y}^{2}}$ ;      $dv={{e}^{y}}dy$

$du=dy$ ;  $v={{e}^{y}}$

Por tanto:

$\mathop{\int }^{}{{y}^{2}}{{e}^{y}}dy={{y}^{2}}{{e}^{y}}-2(y{{e}^{y}}-\mathop{\int }^{}{{e}^{y}}dy)$

$={{y}^{2}}{{e}^{y}}-2y{{e}^{y}}+2\mathop{\int }^{}{{e}^{y}}dy$

$={{y}^{2}}{{e}^{y}}-2y{{e}^{y}}+2{{e}^{y}}$

Gráfica de la familia de soluciones del sistema no homogeneo:

$\large x=\frac{C}{{{y}^{2}}}+{{e}^{y}}+2{{e}^{y}}(-\frac{1}{y}+\frac{1}{{{y}^{2}}})$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Se puede ver una solución particular $x\left( y \right)={{\text{e}}^{y}}-\frac{3}{{{y}^{2}}}-\frac{\text{e}}{{{y}^{2}}}+\frac{2{{\text{e}}^{y}}}{{{y}^{2}}}-\frac{2{{\text{e}}^{y}}}{y}$,

Donde: $C=-3-e$. Nuevamente notar que la función $x=\frac{C}{{{y}^{2}}}+{{e}^{y}}+2{{e}^{y}}(-\frac{1}{y}+\frac{1}{{{y}^{2}}})$ , tiene como dominio los intervalos: $(-\infty ~,~0)$ y $(0~,~\infty )$. Para llegar a la conclusión anterior sobre el dominio de la función solución, basta con analizar la ecuación equivalente $x\left( y \right)=\frac{\left( {{y}^{2}}-2y+2 \right){{e}^{y}}+C}{{{y}^{2}}}$ (ver nota final), y ver que la restricción que tenemos que tomar en cuenta es que ${{y}^{2}}\ne 0$, pues no existe la división entre cero de modo que $y\ne 0$, por lo que los intervalos para la solución, antes mencionados, son evidentes. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ydx=(y{{e}^{y}}-2x)dx$, es:

$$\Large x=\frac{C}{{{y}^{2}}}+{{e}^{y}}+2{{e}^{y}}(-\frac{1}{y}+\frac{1}{{{y}^{2}}})$$

*Notar que:

$x=\frac{C}{{{y}^{2}}}+{{e}^{y}}+2{{e}^{y}}(-\frac{1}{y}+\frac{1}{{{y}^{2}}})$

$x=\frac{C}{{{y}^{2}}}+{{e}^{y}}-\frac{2{{e}^{y}}}{y}+\frac{2{{e}^{y}}}{{{y}^{2}}}$

$x=\frac{C}{{{y}^{2}}}+\frac{{{y}^{2}}{{e}^{y}}}{{{y}^{2}}}-\frac{2{{e}^{y}}}{y}+\frac{2{{e}^{y}}}{{{y}^{2}}}$

$x=\frac{C}{{{y}^{2}}}+\frac{{{y}^{2}}{{e}^{y}}}{{{y}^{2}}}-\frac{2y{{e}^{y}}}{{{y}^{2}}}+\frac{2{{e}^{y}}}{{{y}^{2}}}$

$x=\frac{C+{{y}^{2}}{{e}^{y}}-2y{{e}^{y}}+2{{e}^{y}}}{{{y}^{2}}}$

$x=\frac{C+{{e}^{y}}({{y}^{2}}-2y+2)}{{{y}^{2}}}$

Si analizamos las funciones $f\left( y \right)={{y}^{2}}-2y+2$, $f(y)={{e}^{y}}$ y $f\left( y \right)=\frac{1}{{{y}^{2}}}$, podemos notar más evidentemente cual es el dominio de la función, al notar con mayor claridad el dominio de cada una por separado.

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

A continuación ponemos las gráficas de cada una de las funciones por separado y en conjunto:

Por separado:

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

En conjunto con: $C=-e-3$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

En conjunto con: $C=1$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (problema 16)

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

______________________________________

Ecuación Diferencial Ejercicios Resueltos G Zill Capítulo 2.3 problema 15

Ecuación Diferencial Ejercicios Resueltos G Zill Capítulo 2.3 problema 15 del libro: Dennis G. Zill 7ª Ed.

Ecuación Diferencial Ejercicios Resueltos G Zill Capítulo 2.3 problema 15, el siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método: Factor Integrante

1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y={{y}_{c}}+{{y}_{p}}$

3.                                  ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4.                                   ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problema 15)

a) $\Large ydx-4\left( x+{{y}^{6}} \right)dy=0$

Pasos:

I. El primer paso consiste en escribir la forma estándar de la ED a resolver:

En este caso identificamos que la variable independiente es la que usualmente es la variable dependiente, es decir, “y” es la variable independiente y “x” es la dependiente. Esto lo podemos fácilmente notar en una ED lineal de 1er orden (expresada explícitamente), si nos percatamos de que el coeficiente que se encuentra al frente de la derivada de “dx” depende solo de una variable y esta es contraria a “x”.

Dividimos, entonces, entre el coeficiente de , que es “y”[ecuación a)], los coeficientes de los demás términos de la ecuación que dependen de “y”.

Por último agrupamos términos semejantes y simplificamos.

$\frac{dx}{dy}+P\left( y \right)x=f(y)$

$\frac{dx}{dy}-\frac{4(x+{{y}^{6}})}{y}=0$,

$\frac{dx}{dy}-\frac{4x}{y}-\frac{4{{y}^{6}}}{y}=0$

$\frac{dx}{dy}-\frac{4x}{y}=4{{y}^{5}}$

II. En el segundo paso encontramos el factor integrante:

Para esto sustituimos el valor de P(y) en ${{e}^{\mathop{\int }^{}P\left( y \right)dy}}$,   donde: P(y)=$-\frac{4}{y}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( \mathbf{y} \right)\mathbf{dy}}}$,  

${{e}^{-4\mathop{\int }^{}\frac{dy}{y}}}={{e}^{-4\ln y}}$

$={{e}^{\ln {{y}^{-4}}}}$

$={{y}^{-4}}$

III. Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial: $\frac{dx}{dy}-\frac{4x}{y}=0$ . Para resolverla sustituimos en la fórmula: ${{x}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( y \right)dy}}$, los valores de P(y)=$~-\frac{4}{y}$, encontrado en el primer paso, con anterioridad,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{x}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( y \right)dy}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{x}_{c}}=C{{e}^{\left( – \right)-4\mathop{\int }^{}\frac{dy}{y}}}$

$=C{{e}^{4\ln y}}$

$=C{{e}^{\ln {{y}^{4}}}}$

$=C{{y}^{4}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{x}_{c}}=C{{y}^{4}}$

Ecuación Diferencial Ejercicios Resueltos G Zill Capítulo 2.3 problema 15

Se puede ver una solución particular $x=-3{{y}^{4}}$, donde $C=-3$

Notar que la función ${{x}_{c}}=C{{y}^{4}}$ , tiene como dominio todo el conjunto de los números reales. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dx}{dy}-\frac{4x}{y}=4{{y}^{5}}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{x}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( y \right)dy}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( y \right)dy}}f(y)dy$           , donde: ${{e}^{\mathop{\int }^{}P\left( y \right)dy}}={{y}^{-4}}$ (obtenido en el punto ii.) y $f\left( y \right)=4{{y}^{5}}$, obtenido en el punto i. Notar que la fórmula:

${{x}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( y \right)dy}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( y \right)dy}}f(y)dy$, es solo la contraparte de la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$ , para ver de dónde salen estas siga el enlace siguiente:

solución del sistema no homogeneo.

${{x}_{p}}=\frac{1}{{{y}^{-4}}}\mathop{\int }^{}{{y}^{-4}}(4{{y}^{5}})dx$

$=\frac{4}{{{y}^{-4}}}\mathop{\int }^{}\text{y}dx$

$=\frac{4}{{{y}^{-4}}}(\frac{1}{2}{{y}^{2}})$

$=2{{y}^{6}}$

Gráfica de la familia de soluciones del sistema no homogeneo:

$x=C{{y}^{4}}+2{{y}^{6}}$

Ecuación Diferencial Ejercicios Resueltos G Zill Capítulo 2.3 problema 15

Se puede ver una solución particular $x\left( y \right)=-5{{y}^{4}}+2{{\text{y}}^{6}}$,

Donde: $C=-5$. Nuevamente notar que la función $x=C{{y}^{4}}+2{{y}^{6}}$ , tiene como dominio todo el conjunto de los números reales. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ydx-4\left( x+{{y}^{6}} \right)dy=0$, es:

$\huge x=C{{y}^{4}}+2{{y}^{6}}$

Notar que:

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Ecuacion Diferencial Ejercicios Resueltos Dennis G. Zill Capítulo 2.3 (14)

Ecuación diferencial, ejercicios resueltos del libro: Dennis G. Zill 7ª Ed.

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método de resolución de ED lineales

Él siguiente método te ayudará a resolver cualquier ED lineal de primer orden en 4 pasos sencillos. Si quieres ver una explicación más detallada de las bases del método, puedes ver el siguiente enlace: Método: Factor Integrante, click aquí

1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y={{y}_{c}}+{{y}_{p}}$

3.                                  ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4.                                   ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problema 14)

$x{{y}^{‘}}+\left( 1+x \right)y={{e}^{-x}}\sin 2x$

Pasos:

I. El primer paso consiste en escribir la forma estándar de la ED a resolver:

Para eso dividimos entre el coeficiente de $y’$, que es “x”, los coeficientes de los demás términos de la ecuación que dependen de “x”.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

  1. $\frac{dy}{dx}+\frac{(1+x)}{x}y=\frac{{{e}^{-x}}\sin 2x}{x}$,

II. En el segundo paso encontramos el factor integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,

Para esto sustituimos el valor de P(x) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde: P(x)=$~\frac{(1+x)}{x}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

       2.   ${{e}^{\mathop{\int }^{}\frac{1+x}{x}dx}}={{e}^{\mathop{\int }^{}\frac{1}{x}dx+\mathop{\int }^{}dx}}$

$={{e}^{\ln x+x}}$

$=x{{e}^{x}}$

III: Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{(1+x)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$. Los valores de P(x)=$~\frac{(1+x)}{x}$, encontrado en i.  anteriormente y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

3.   ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{1+x}{x}dx}}$

$=C{{e}^{-\ln x-x}}$

$=C{{e}^{\ln {{x}^{-1}}-x}}$

$=C{{x}^{-1}}{{e}^{-x}}$

$=\frac{C{{e}^{-x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-x}}}{x}$

Se puede ver una solución particular $y=-\frac{3{{\text{e}}^{-1-x}}}{x}$, donde $C=-3{{e}^{-1}}$

Notar que la función ${{y}_{c}}=\frac{C{{e}^{-x}}}{x}$, tiene como dominio todo el conjunto de los números reales excepto $x=0$, pero la solución, por definición (ver Intervalo de definición de una solución I), solo se encuentra en uno de estos dos  intervalos: $(-\infty ,0),~(0,\infty )$, de los cuales cualquiera podría ser el intervalo de solución I.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{(1+x)}{x}y=\frac{{{e}^{-x}}\sin 2x}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=x{{e}^{x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-x}}\sin 2x}{x}$, obtenido en el punto i. Para esclarecer de donde sale la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, siga el enlace:  solución del sistema no homogeneo.

4.   ${{y}_{p}}=\frac{1}{x{{e}^{x}}}\mathop{\int }^{}x{{e}^{x}}(\frac{{{e}^{-x}}\sin 2x}{x})dx$

$=\frac{1}{x{{e}^{x}}}\sin 2xdx$

$=-\frac{{{e}^{-x}}}{2x}\cos 2x$

Gráfica de la familia de soluciones del sistema no homogeneo:

(Solución General = Solución Complementaria + Solución Particular)

$y=\frac{C{{e}^{-x}}}{x}-\frac{{{e}^{-x}}}{2x}\cos 2x$

Se puede ver una solución particular $y\left( x \right)=\frac{3{{\text{e}}^{-1-x}}}{x}+\frac{{{\text{e}}^{-x}}\text{Cos}[2]}{2x}-\frac{{{\text{e}}^{-x}}\text{Cos}[2x]}{2x}$,Donde: $ C=3{{e}^{-1}}+\frac{{{\text{e}}^{-x}}\text{Cos}[2]}{2x}$. Nuevamente notar que la función $y=\frac{C{{e}^{-x}}}{x}-\frac{{{e}^{-x}}}{2x}\cos 2x$, tiene como dominio todo el conjunto de los números reales excepto $x=0$, pero la solución, por definición (ver Intervalo de definición de una solución I), solo se encuentra en uno de estos dos  intervalos: $(-\infty ,0),~(0,\infty )$, de los cuales cualquiera podría ser el intervalo de solución I.

Por tanto la solución de Ecuación Diferencial lineal, $x{{y}^{‘}}+\left( 1+x \right)y={{e}^{-x}}\sin 2x$, es:

$\huge y=\frac{C{{e}^{-x}}}{x}-\frac{{{e}^{-x}}}{2x}\cos 2x$

Notar que:

$\mathop{\int }^{}\sin 2xdx=-\frac{1}{2}\cos 2x$

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

____________________________________________________________

Ecuacion Diferencial Ejercicios Resueltos Dennis Zill Capítulo 2.3 (12-13)

Ecuacion Diferencial Lineal Ejercicio 12 – 13 cap 2-3. En este artículo encontrarás los ejercicios resueltos 12 y 13 del capítulo 2.3 del libro de Dennis G. Zill, mediante el método de 4 pasos (o factor integrante) que proponemos ne este blog para resolver cualquier ecuación diferencial lineal de primer orden.

Ecuación diferencial ejercicios resueltos del libro: Dennis G. Zill 7ª Ed.

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método de resolución de ED lineales

A continuación se describe el método de 4 pasos para resolver cuaquier ecuación diferencial lineal de primer orden. Éste método también es conocido como método del factor integrante, el cual se explica más detalladamente en el siguiente enlace: Método: Factor Integrante, click aquí

  1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$
  2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y= y_{c}+y_{p}$

3               ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4              ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problemas 12 al 13)

a)      $\left( 1+x \right)\frac{dy}{dx}-xy=x+{{x}^{2}}$

Pasos:

  1. $\frac{dy}{dx}-\frac{x}{\left( 1+x \right)}y=\frac{x+{{x}^{2}}}{1+x}=x$
  2. ${{e}^{-\mathop{\int }^{}\frac{x}{1+x}dx}}={{e}^{-\mathop{\int }^{}(1-\frac{1}{(1+x)})dx}}={{e}^{-x}}{{e}^{\ln (1+x)}}$

$={{e}^{-x}}(1+x)$

3.   ${{y}_{c}}=C{{e}^{-(-)\mathop{\int }^{}(1-\frac{1}{(1+x)})dx}}=C{{e}^{\mathop{\int }^{}(1-\frac{1}{(1+x)})dx}}=C{{e}^{x}}{{e}^{-\ln (1+x)}}$

$=C{{e}^{x}}{{e}^{\ln {{(1+x)}^{-1}}}}$

$=C{{e}^{x}}{{(1+x)}^{-1}}$

$=\frac{C{{e}^{x}}}{(1+x)}$

4.   ${{y}_{p}}=\frac{1}{{{e}^{-x}}(1+x)}\mathop{\int }^{}{{e}^{-x}}(1+x)\left( x \right)dx$

$=\frac{{{e}^{x}}}{(1+x)}\mathop{\int }^{}(x+{{x}^{2}}){{e}^{-x}}dx$

$=\frac{{{e}^{x}}}{(1+x)}\mathop{\int }^{}x{{e}^{-x}}dx+\mathop{\int }^{}{{x}^{2}}{{e}^{-x}}dx$

Integrando por partes:

$\mathop{\int }^{}{{x}^{2}}{{e}^{-x}}dx$

$u={{x}^{2}}$                        ;              $dv={{e}^{-x}}dx$

$du=2xdx$                               $v=-{{e}^{-x}}$

$\mathop{\int }^{}{{x}^{2}}{{e}^{-x}}dx=-{{x}^{2}}{{e}^{-x}}+2\mathop{\int }^{}x{{e}^{-x}}dx$

Realizamos la misma operación para la integral obtenida:

$\mathop{\int }^{}x{{e}^{-x}}dx$

$u=x$                          ;              $dv={{e}^{-x}}dx$

$du=dx$                     $v=-{{e}^{-x}}$

$\mathop{\int }^{}x{{e}^{-x}}dx=-x{{e}^{-x}}+\mathop{\int }^{}{{e}^{-x}}dx$

$=-x{{e}^{-x}}-{{e}^{-x}}$

Y regresando al paso 4:

${{y}_{p}}=\frac{{{e}^{x}}}{(1+x)}[-x{{e}^{-x}}-{{e}^{-x}}-{{x}^{2}}{{e}^{-x}}+2(-x{{e}^{-x}}-{{e}^{-x}})]$

$=\frac{{{e}^{x}}}{(1+x)}[-{{x}^{2}}{{e}^{-x}}-3x{{e}^{-x}}-3{{e}^{-x}}]$

$=\frac{1}{(1+x)}[-{{x}^{2}}-3x-3]$

Por tanto:

$\huge y=\frac{c{{e}^{x}}}{x+1}-\frac{{{x}^{2}}+3x+3}{x+1}$

Notar que:  $\frac{x+{{x}^{2}}}{x+1}=\frac{x(1+x)}{1+x}=x$

Esta división $\frac{x}{1+x}$, da como resultado:

$\frac{x}{1+x}=1-\frac{1}{1+x}$,

Utilizando la división de polinomios. (Aunque es mejor la división sintética)

Ecuacion Diferencial Lineal Ejercicio 12 - 13 cap 2.3
Figura 1. División de polinomios

Nota: Puedo incluir una publicación sobre división sintética de ser necesario.

b)      ${{x}^{2}}{{y}^{‘}}+x(x+2)y={{e}^{x}}$

Pasos:

  1. $\frac{dy}{dx}+\frac{(x+2)}{x}y=\frac{{{e}^{x}}}{{{x}^{2}}}$
  2. ${{e}^{\mathop{\int }^{}\frac{x+2}{x}dx}}={{e}^{x+\ln {{x}^{2}}}}={{e}^{x}}{{e}^{\ln {{x}^{2}}}}={{x}^{2}}{{e}^{x}}$

Desglosando la integral:

$\mathop{\int }^{}\frac{x+2}{x}dx=\mathop{\int }^{}dx+2\mathop{\int }^{}\frac{dx}{x}$

$=x+2\ln x$

$=x+\ln {{x}^{2}}$

Regresando a los pasos:

3.   ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{x+2}{x}dx}}$

$=C{{e}^{-(x+\ln {{x}^{2)}}}}$

$=C{{e}^{-x}}{{e}^{-\ln {{x}^{2}}}}$

$=C{{e}^{-x}}{{e}^{\ln {{x}^{-2}}}}$

$=C{{x}^{-2}}{{e}^{-x}}$

$=C\frac{{{e}^{-x}}}{{{x}^{2}}}$

4.   ${{y}_{p}}=\frac{1}{{{x}^{2}}{{e}^{x}}}\mathop{\int }^{}{{x}^{2}}{{e}^{x}}(\frac{{{e}^{x}}}{{{x}^{2}}})dx$

$=\frac{1}{{{x}^{2}}{{e}^{x}}}\mathop{\int }^{}{{e}^{2x}}dx$

$=\frac{1}{2{{x}^{2}}{{e}^{x}}}{{e}^{2x}}$

$=\frac{{{e}^{x}}}{2{{x}^{2}}}$

Por tanto:

$\huge y=C\frac{{{e}^{-x}}}{{{x}^{2}}}+\frac{{{e}^{x}}}{2{{x}^{2}}}$


Acá un video explicando éste último problema desde un ángulo ligeramente diferente.

Ejercicio resuelto ${{x}^{2}}{{y}^{‘}}+x(x+2)y={{e}^{x}}$

Acá les dejo el pizarrón del video, dale doble click y ampliala para ver con detalle

Ecuacion Diferencial Lineal Ejercicio 12 - 13 cap 2-3

Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (10-11)

En éste problema de Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (10-11) te mostramos un método que te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos.

Utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Resolución de ED lineales Libro de Dennis G. Zill Ed 7ma.

Método: Factor Integrante

  1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$
  2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y= y_{c}+y_{p}$

3               ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4              ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

 

Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (10)

a)      $x{{y}^{‘}}+2y=3$

Pasos:

  1. $\frac{dy}{dx}+2\frac{y}{x}=\frac{3}{x}$
  2. ${{e}^{2\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{2\ln x}}={{e}^{\ln {{x}^{2}}}}={{x}^{2}}$
  3. ${{y}_{c}}=C{{e}^{-\ln {{x}^{2}}}}=C{{e}^{\ln {{x}^{-2}}}}=C{{x}^{-2}}=\frac{C}{{{x}^{2}}}$
  4. ${{y}_{p}}=\frac{1}{{{x}^{2}}}\mathop{\int }^{}{{x}^{2}}\left( \frac{3}{x} \right)dx$

$=\frac{1}{{{x}^{2}}}\mathop{\int }^{}3xdx$

$=\frac{3}{{{x}^{2}}}\mathop{\int }^{}xdx=\frac{3}{2{{x}^{2}}}{{x}^{2}}$

$=\frac{3}{2}$

Por tanto:

                          $y=\frac{C}{{{x}^{2}}}+\frac{3}{2}$

 

Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (11)

b)      $x{{y}^{‘}}+4y={{x}^{3}}-x$

Pasos:

  1. $\frac{dy}{dx}+\frac{4}{x}y={{x}^{2}}-1$
  2. ${{e}^{4\mathop{\int }^{}\frac{1}{x}dx}}={{e}^{4\ln x}}={{e}^{\ln {{x}^{4}}}}={{x}^{4}}$
  3. ${{y}_{c}}=C{{e}^{-4\ln x}}$

$=C{{e}^{\ln {{x}^{-4}}}}$

$=C{{x}^{-4}}$

$=\frac{C}{{{x}^{4}}}$

4.   ${{y}_{p}}=\frac{1}{{{x}^{4}}}\mathop{\int }^{}{{x}^{4}}({{x}^{2}}-1)dx$

$=\frac{1}{{{x}^{4}}}\mathop{\int }^{}({{x}^{6}}-{{x}^{4}})dx$

$=\frac{1}{{{x}^{4}}}\mathop{\int }^{}{{x}^{6}}dx-\mathop{\int }^{}{{x}^{4}}dx$

$=\frac{1}{7{{x}^{4}}}{{x}^{7}}-\frac{1}{5{{x}^{4}}}{{x}^{5}}$

$=\frac{1}{7}{{x}^{3}}-\frac{1}{5}x$

Por tanto:

$y=\frac{C}{{{x}^{4}}}+\frac{1}{7}{{x}^{3}}-\frac{1}{5}x$

La gráfica de la familia de soluciones para ésta última ecuación diferencial es la siguiente:

Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (10-11)

Figura 1. Familia de soluciones de la ED:  $\large xy^{‘}+4y=x^{3}-x$.

En la gráica de la Figura 1, la función solución en amarillo: $y(x) = -\frac{x}{5}+\frac{x^{3}}{7}$, corresponde a la solución de la ecuación diferencial en cuestion ($xy^{‘}+4y=x^{3}-x$), para los valores iniciales $y(0)=0$

 

Ecuacion Diferencial Ejercicio Resuelto G. Zill cap 2.3 prob (10-11)

Te invito a que practiques la solución de problemas mediante los pasos aquí descritos y que puedes ver a detalle en el siguiente artículo: Método de 4 pasos para ED’s lineales.

La aplicación ordenada del conocimiento adquirido permite que desarrolles tu intuición al tener una estructura mental donde se pueda depositar nuevo conocimiento.

La intuición, es una parte de la inteligencia que toma el conocimiento de partes del cerebro que no son accesibles para el consciente, en esta parte se encuentra toda tu sabiduría, tu Genio Interno.

Para saber más sobre como desarrollar tu intuición y aprender Ecuaciones Diferenciales, te invito a leer el artículo: La Técnica Perfecta para Aprender Ecuaciones Diferenciales(da click aquí).

Te sirvió este artículo?

Quiero otro Ejemplo similar de resolución de ecuaciones lineales de primer orden

Quiero un Ejemplo de un circuito del tipo RLC  en serie

Llévame al índice de ejercicios resueltos, clasificados según su tipo

Cómo simulo problemas de Ecuaciones Diferenciales con Software libre y poderoso?

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. =)