Cómo resolver una Ecuación Diferencial dividida en partes, con valores iniciales

Ecuación diferencial lineal definida por partes

En este ejemplo resolveremos, en los mismos 4 pasos que ya hemos utilizado con anterioridad, una ecuación diferencial dividida en partes  (a trozos), con valores iniciales (que además es lineal), y la analizaremos GRÁFICAMENTE.

Con este ejercicio, podremos ver en qué consiste el concepto de Ecuación Diferencial por partes, qué significa gráficamente sus “partes” o más propiamente dicho LA FUNCIÓN DE ENTRADA* y cómo manipular un Problema con Valores Iniciales (PVI), con una Ecuación Diferencial (ED) (ó sistema lineal), de estas características.

Nuestro ejemplo es:

a)      $\frac{dy}{dx}+2y=f(x)$,             $y\left( 0 \right)=0$,

$\Large f(x)=\left\{\begin{matrix}1,0\leq x\leq 3\\ 0,x> 3\end{matrix}\right.$

Utilizaremos el método del Factor Integrante (ver enlace). Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 31).

Empezamos con $f\left( x \right)=1$:

Pasos:

I.                    Forma estándar de la ED a resolver: $\frac{dy}{dx}+P(x)y=f(x)$

Solo sustituimos en valor de la función de entrada.

$\frac{dy}{dx}+2y=1$

II.                  Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en $ {{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=2$.

${{e}^{2\mathop{\int }^{}dx}}={{e}^{2x}}$

III.                Encontramos la familia de soluciones del sistema homogéneo asociado:

Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=2$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado

$\frac{dy}{dx}+2y=0$

${{y}_{c}}=C{{e}^{-2\mathop{\int }^{}dx}}$

$ =C{{e}^{-2x}}$

$ =\frac{C}{{{e}^{2x}}}$

*Los nombres SISTEMA LINEAL, FUNCIÓN DE ENTRADA y FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, acá utilizados son en realidad utilizados para SISTEMAS DINÁMICOS donde los nombres adquieren más sentido al hablar de “ENTRADAS y/o SALIDAS”. Acá solo hemos querido integrar la terminología por el hecho de que los Sistemas Dinámicos, son los modelos donde más recurrentemente se utilizan las ecuaciones diferenciales y este tipo de funciones definidas por partes.

Propiamente dicho, un SISTEMA LINEAL consta de las VARIABLES DE ESTADO (variables que en los sistema dinámicos dependen del tiempo “t”), $ {{y}^{n}}(t),{{y}^{n-1}}(t),\ldots ,{{y}^{2}}(t),{{y}^{1}}(t)$. Para que un sistema sea Lineal, tiene que cumplir con el Teorema de Superposición.

IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:

Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}={{e}^{2}}$ (obtenido en el punto ii.) y $ f\left( x \right)=1$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo

$ \frac{dy}{dx}+2y=1$

$ {{y}_{p}}=\frac{1}{{{e}^{2x}}}\mathop{\int }^{}{{e}^{2x}}(1)dx$

$ {{y}_{p}}=\frac{1}{{{e}^{2x}}}\mathop{\int }^{}{{e}^{2x}}dx$

$ {{y}_{p}}=\frac{1}{2{{e}^{2x}}}\mathop{\int }^{}{{e}^{2x}}(2)dx$

$ {{y}_{p}}=\frac{1}{2{{e}^{2x}}}[{{e}^{2x}}]$

$ {{y}_{p}}=\frac{1}{2}$

Por tanto, la solución general del sistema LINEAL no homogéneo: $ \frac{dy}{dx}+2y=1$, donde su función de entrada es igual a: $ \mathbf{f}\left( \mathbf{x} \right)=1$, es:

$ y\left( x \right)=\frac{C}{{{e}^{2x}}}+\frac{1}{2}$

Ahora, encontraremos la solución particular o “RESPUESTA DEL SISTEMA”, para los valores iniciales: $ y\left( 0 \right)=0$.

Aplicamos acá los valores iniciales porque la Ecuación Diferencial con $ f\left( x \right)=1$, está definida para el intervalo $ 0\le x\le 3$, que incluye a $ x=0$.

Solución del Problema de Valores Iniciales (PVI) de la ecuación diferencial lineal de 1er Orden dividida en partes.

Primero evaluamos cuando $ f\left( x \right)=1$

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “x” e “y”, que vienen como condiciones iniciales y despejando “C”.

$ x=0;~~~~~~y=0$

Por tanto:

Si la solución general del Sistema Lineal no Homogéneo es:

$ y\left( x \right)=\frac{C}{{{e}^{2x}}}+\frac{1}{2}$

Entonces, sustituyendo los valores iniciales
$y\left( 0 \right)=0$

Tenemos:

$ 0=\frac{C}{{{e}^{2(0)}}}+\frac{1}{2}$

$ \Rightarrow 0=\frac{C}{1}+\frac{1}{2}$

$ \Rightarrow 0=C+\frac{1}{2}$

$ \Rightarrow C=-\frac{1}{2}$

Por lo que UNA solución particular del sistema Lineal no Homogéneo, es:

$ y\left( x \right)=-\frac{1}{2{{e}^{2x}}}+\frac{1}{2}$

Ahora, resolvemos cuando $ f\left( x \right)=0$

Ahora, Resolvemos el sistema lineal para el segundo valor de su función de entrada, es decir, cuando $ f\left( x \right)=0$ , por lo que tenemos que resolver:

 $ \frac{dy}{dx}+2y=0$,

Podemos notar que en este caso, la ED a evaluar (el sistema lineal), es el sistema homogéneo asociado de la ED anterior (paso III), por lo que sabemos que su solución es:

$ y(x)=\frac{C}{{{e}^{2x}}}$

Ahora, para conocer la solución particular de la Función de Salida anterior, debemos tener precaución, ya que el sistema Lineal cuya función de entrada es: $ f\left( x \right)=0$, no está definida para cuando: $ x=0$, por lo que para evaluar esta función para encontrar una solución particular, haremos uso de la DEFINICIÓN de CONTINUIDAD, como sigue:

Método para encontrar la solución particular en un Sistema Lineal (ED lineal) de 1er Orden definida en partes, donde el dominio de una de sus funciones de entrada no coincide con el valor dado, como condición inicial, a su variable independiente.

Tal es el caso en esta ocasión pues podemos ver que cuando el sistema lineal tiene $ \text{f}\left( \text{x} \right)=0$, el dominio de su variable independiente es: $ \text{x}>3$,

$\Large f(x)=\left\{\begin{matrix}1,0\leq x\leq 3\\ 0,x> 3\end{matrix}\right.$

Por lo que no podemos considerar sustituir $ x=0$, en la Función de Salida obtenida:

$ y\left( x \right)=\frac{C}{{{e}^{2x}}}$,       $ x>3$

Para esta situación, recurriremos al concepto de CONTINUIDAD. Evocando esta definición, recordemos que uno de los teoremas dicen que si el límite de una función cuando su variable independiente tiende a un número específico, existe, si el límite de la función, cuando tiende a ese número por la derecha es igual al límite cuando la función tiende a ese número por la izquierda. Es decir:

$ \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,y(x)\to \exists \underset{x\to 3}{\mathop{\lim }}\,y(x)$,         Donde:  $ \exists =$ Existe

En nuestro caso, utilizamos este teorema para encontrar el valor de “C”, para hallar la Respuesta del Sistema cuando la función de entrada es: $ \text{f}\left( \text{x} \right)=0$, suponiendo que el límite existe. Entonces:

El límite por la izquierda:

$ \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to 3}{\mathop{\lim }}\,-\frac{1}{2{{e}^{2x}}}+\frac{1}{2}=-\frac{1}{2{{e}^{2\left( 3 \right)}}}+\frac{1}{2}=-\frac{1}{2{{e}^{6}}}+\frac{1}{2}$, cuando:  $ 0\le x\le 3$

Y el límite por la derecha:

$ \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,y(x)=\underset{x\to 3}{\mathop{\lim }}\,\frac{C}{{{e}^{2x}}}=\frac{C}{{{e}^{2(3)}}}=\frac{C}{{{e}^{6}}}$,                     cuando:  $ x>3$

Con la suposición de que el límite existe, igualamos los resultados anteriores:

$ -\frac{1}{2{{e}^{6}}}+\frac{1}{2}=\frac{C}{{{e}^{6}}}$

Esto implica:

$ C=-\frac{1}{2}+\frac{{{e}^{6}}}{2}$,

$ C=\frac{1}{2}(-1+{{e}^{6}})$

Por tanto:

$ y\left( x \right)=\frac{C}{{{e}^{2x}}}=\frac{\frac{1}{2}(-1+{{e}^{6}})}{{{e}^{2x}}}=\frac{-1+{{e}^{6}}}{2{{e}^{2x}}}$

De donde, la solución del Sistema Lineal, dividida en partes, con valores iniciales (PVI), es:

$\LARGE y(x)=\left\{\begin{matrix}-\frac{1}{2e^{2x}}+\frac{1}{2};0\leq x\leq 3\\ \frac{-1+e^{6}}{2e^{2x}};x>3 \end{matrix}\right.$

Este resultado es válido, aparentemente al haber empleado la definición de Continuidad, sin embargo, habrá que verificarlo y lo haremos posteriormente (siga el link), y veremos que no es válido el resultado por la definición de SOLUCIÓN DE LA ED EN UN INTERVALO, que dice que la solución de una ED diferencial y sus derivadas al sustituirlas en esta, la reducen a una identidad. En este caso no es así, puesto que para un mismo punto (punto $ x=3$), tenemos dos funciones.

Vemos las gráficas para, aclarar cómo se vería la gráfica definida en partes y cómo se observa la misma en el punto de discontinuidad.

ecuacion diferencial dividida en partes con valores iniciales

La Gráfica en negro es la FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, para el problema de valores iniciales, la forma que adquiere esta gráfica se puede entender si sobreponemos sus componentes (las gráficas en azul y anaranjado)

ecuacion diferencial dividida en partes con valores iniciales

En esta gráfica podemos ver que en el punto $x=3$, la gráfica aparece continua, sin embargo, la derivada de las funciones en ese punto, al sustituirlas en la ED original, no la reducen a la identidad, es decir:

Derivando el lado derecho de la función de salida y el lado izquierdo:

$ y\left( x \right)=\frac{1}{2}-\frac{{{\text{e}}^{-2x}}}{2}$  y

$ y\left( x \right)=\frac{1}{2}{{\text{e}}^{6-2x}}-\frac{{{\text{e}}^{-2x}}}{2}$,

E igualando los resultados, tenemos:

$ {{\text{e}}^{6-2x}}=0$,

Por lo que al no obtener una identidad, la ecuación no es diferenciable en $ x=3$.

Ecuaciones Diferencial

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

¿Quieres GANAR DINERO y convertirte en un E


Se un Experto

Te invito a que te inscribas a los cursos que te ofrecemos en afiliación con nuestros socios.

Ve a la página de nuestros cusos, da click aquí: Programar en Python y MATLAB e inscribete a alguno de los cursos que tenemos para ingenieros eléctricos.

Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos, ver el Problema 32ver prob 33ver prob 34

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Intervalo de solucion ecuaciones diferenciales. Problema de valores iniciales (PVI)

Intervalo de solucion ecuaciones diferenciales

Encontrar el intervalo de solución más largo «, para el Problema del Valor inicial:

a)      ${{y}^{‘}}+\left( \tan x \right)y={{\cos }^{2}}x$,             $ y\left( 0 \right)=-1$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 30).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que $ f(x)$ , es una constante.

$ \frac{dy}{dx}+P(x)y=f(x)$

$ \frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$

II.                  En el segundo paso encontramos el factor integrante: $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\tan x$.

${{e}^{{\int }^{}\tan xdx}}={{e}^{-\ln (\cos x)}}$

$ ={{e}^{\ln {{(\cos x)}^{-1}}}}$

$ ={{(\cos x)}^{-1}}$

$ =\frac{1}{\cos x}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dy}{dx}+(\tan x)y=0$. Sustituimos en ${{y}_{c}}=C{{e}^{{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\tan x$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-{\int }^{}\tan xdx}}$

$ =C{{e}^{(-)-\ln (\cos x)}}$

$ =C{{e}^{\ln (\cos x)}}$

$ =C\cos x$

Solución Específica para el Sistema Homogéneo.

Intervalo de solucion ecuaciones diferenciales

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ x=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }y=-1$ , de modo que:

Sustituyendo en:

${{y}_{c}}=C\cos x$

Tenemos:

$ -1=C\cos 0~\Rightarrow ~~C=~-1$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{y}_{c1}}=-\cos x$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=C\cos x$ y la solución particular  ${{y}_{c1}}=-\cos x$

intervalo de solucion ecuaciones diferenciales
intervalo de solucion ecuaciones diferenciales
intervalo de solucion ecuaciones diferenciales

La función $ {{y}_{c}}=C\cos x$, tiene como dominio más largo el intervalo: \({{D}_{{y}_{c}}}:\big\{x \in R \mid – \frac{ \pi }{2} < x <  \frac{ \pi }{2}\big\}\). Sin embargo, la solución particular \( {{y}_{{c}_{1}}}=\cos x\), tiene el mismo dominio:

$D_{y_{c1}}:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

Es decir, la función del problema de valores iniciales, no tiene el mismo que el de la función, solución general. El valor de \(C\) es \(C=-1\), para le solución particular del PVI \(\frac{dy}{dx}+\big(\tan x\big) \ast y=0\), con \(y \left ( 0 \right ) = -1\).  Ver gráfica al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{{\int }^{}P\left( x \right)dx}}=\frac{1}{\cos x}$ (obtenido en el punto ii.) y $f\left( x \right)={{\cos }^{2}}x$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{{{(\cos x)}^{-1}}}{\int }^{}{{(\cos x)}^{-1}}({{\cos }^{2}}x)dx$

$ {{y}_{p}}=\cos x{\int }^{}{{(\cos x)}^{-1}}{{(\cos x)}^{2}}dx$

$ {{y}_{p}}=\cos x{\int }^{}\cos xdx$

$ {{y}_{p}}=\cos x\sin x$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

Intervalo de solucion ecuaciones diferenciales

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “$ x$” e “$ y$”, que vienen como condiciones iniciales y despejando “ C”.

$x=0;~~~~~~y=-1$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ y\left( x \right)=C\cos x+\cos x\sin x$

Entonces, sustituyendo los valores iniciales
$ y\left( 0 \right)=-1$

Tenemos:

$ -1=C\cos 0+\cos 0\sin 0$

$ \Rightarrow -1=C(1)+(1)(0)$

$ \Rightarrow -1=C+0$

$ \Rightarrow C=-1$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ y\left( x \right)=-\cos x+\cos x\sin x$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ y\left( x \right)=C\cos x+\cos x\sin x$

y la solución particular del PVI:
$ y\left( x \right)=-\cos x+\cos x\sin x$

El dominio de la solución $ y\left( x \right)=-\cos x+\cos x\sin x$ está en el intervalo: $D_{y(x)}:-\infty< x< \infty$ O dicho de forma más común, el dominio de las solución del PVI ($\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$,   $y\left( 0 \right)=-1$), es el intervalo abierto: $ (-\infty ,\infty )$, ver la gráfica anterior para notar la diferencia entre intervalo de solución del PVI e intervalo de la solución general. También, ver gráfica al final del ejercicio. Notar que el valor de $C=-1$ , para el problema del PVI, acá mostrado. Ver al final el desglose de los dominios de cada una de las gráficas que incluye la función solución del PVI (sistema no homogéneo).

Por tanto, la solución del Problema del Valor Inicial: 

$\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$, es,

$y\left( x \right)=-\cos x+\cos x\sin x$

Con intervalo de solución:

$\LARGE I:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

 

En la siguiente gráfica se ve más claramente la diferencia entre el dominio de la función solución general y el dominio de la solución particular del problema de Valores Iniciales:

Como podemos notar, la función solución ($y\left( x \right)=-\cos x+\cos x\sin x$) del Problema de valores iniciales:  ( $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$), está definida para todo el intervalo $(-\infty ,\infty )$, aunque la función, solución general, de la Ecuación Diferencial: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, no está definida para los valores múltiplos enteros de $\frac{\pi }{2}$, o en radianes (como aparece en las gráficas), son los múltiplos de: $1.57079633$ radianes.

Por tanto:

Para la solución general, el intervalo de solución es: $\left( -\frac{\pi }{2},\frac{\pi }{2} \right)$

Para la solución del PVI, el intervalo de solución es: $\left( -\infty ,\infty \right)$

Ecuaciones Diferenciales

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí para mas información

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales

 

Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos: Ecuación diferencial, ejercicio del Capítulo 2.3 Problema 17

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Puedes descargar éste artículo en formato PDF dando click aquí

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Intervalo de solucion: ¿Cómo encontrarlo en un Problema del Valor Inicial(PVI)?

Encontrar la solución y el intervalo más largo I (intervalo de solucion), para el Problema del Valor inicial(PVI):

a)      $\left( x+1 \right)\frac{dy}{dx}+y=\ln x$,             $y(1)=10$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 29).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que $f(x)$ , es una constante.

$\frac{dy}{dx}+P(x)y=f(x)$

$\frac{dy}{dx}+\frac{1}{x+1}y=\frac{\ln x}{x+1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\frac{1}{x+1}$.

${{e}^{\mathop{\int }^{}\frac{1}{x+1}dx}}={{e}^{\ln (x+1)}}$

$ =\text{x}+1$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dy}{dx}+\frac{1}{x+1}y=0$. Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\frac{1}{x+1}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{1}{x+1}dx}}$

$=C{{e}^{-\ln (x+1)}}$

$=C{{e}^{-\ln (x+1)}}$

$=C{{e}^{\ln {{(x+1)}^{-1}}}}$

$=C{{(x+1)}^{-1}}$

$=\frac{C}{(x+1)}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $x=1;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }y=10$ , de modo que:

Sustituyendo en:

${{y}_{c}}=\frac{C}{x+1}$

Tenemos:

$10=\frac{C}{1+1}~\Rightarrow ~~C=\left( 2 \right)10~\Rightarrow C=20$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

${{y}_{c1}}=\frac{20}{x+1}$

Grafica de la familia de soluciones del sistema homogéneo asociado:

${{y}_{c}}=\frac{C}{x+1}$ y la solución particular  ${{y}_{c1}}=\frac{20}{x+1}$

intervalo de solucion del problema de valores iniciales

La función $y_{c}=\frac{C}{x+1}$ , tiene como dominio más largo el intervalo: $D_{y_{c}}:\left \{x \epsilon R | -1x<\infty \right \}$. Por tanto, la solución particular $y_{c1}=\frac{20}{x+1}$, tiene el mismo dominio: $D_{{y}_{c1}}:\left\{ x\in R |-1<x<\infty \right\}$, también. Es decir, el dominio de las funciones abarca todos los números reales. El valor de $C=20$ , para la solución particular del PVI $\frac{dy}{dx}+\frac{1}{x+1}y=0$$y(1)=10$. Ver de dónde sale el dominio de la función solución del PVI, analizando cada gráfica que ésta contiene, al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{1}{x+1}y=\frac{\ln x}{x+1}$. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}={{e}^{-kt}}$ (obtenido en el punto ii.) y $f\left( t \right)=\frac{1}{x+1}$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo

${{y}_{p}}=\frac{1}{\text{x}+1}\mathop{\int }^{}\text{x}+1(\frac{\ln x}{x+1})dx$

$=\frac{1}{\text{x}+1}\mathop{\int }^{}\ln xdx$

Utilizando, integración por partes:

$u=\ln x~~~~;~~~~~~~~dv=dx$

$du=\frac{dx}{x}~~~~~~;~~~~~~~~v=x$

Por tanto:

$=\frac{1}{\text{x}+1}[x\ln x-\mathop{\int }^{}x\frac{dx}{x}]$

$=\frac{1}{\text{x}+1}[x\ln x-\mathop{\int }^{}dx]$

$=\frac{1}{\text{x}+1}[x\ln x-x]$

$=\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “x” e “y”, que vienen como condiciones iniciales y despejando “C”.

$x=1;~~~~~~y=10$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Entonces, sustituyendo los valores iniciales
$y\left( 1 \right)=10$

Tenemos:

$10=\frac{C}{1+1}+\frac{1\ln 1}{1+1}-\frac{1}{1+1}$

$\Rightarrow 10=\frac{C}{2}+\frac{1\ln 1}{2}-\frac{1}{2}$

$\Rightarrow 10=\frac{C+1\ln 1-1}{2}$

$\Rightarrow 20=C+1\ln 1-1$

$\Rightarrow 20+1=C+1\ln 1$

$\Rightarrow 21=C+\ln {{1}^{1}}$

$\Rightarrow 21=C+0$

$\Rightarrow C=21$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{\text{x}+1}-\frac{x}{x+1}$

y la solución particular del PVI:
$y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$

intervalo de solucion del problema de valores iniciales

El dominio de la solución $y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$ está en el intervalo: ${{D}_{y(x)}}:0<x<\infty$ . O dicho de forma más común, el dominio de la solución del PVI ($\left( x+1 \right)\frac{dy}{dx}+y=\ln x$,   $y(1)=10$), es el intervalo abierto: $(0,\infty )$, ver que el cero no se incluye en el intervalo solución. Notar que el valor de $C=21$ , para el problema del PVI, acá mostrado. Ver al final el desglose de los dominios de cada una de las gráficas que incluye la función solución del PVI (sistema no homogéneo).

Por tanto, la solución del Problema del Valor Inicial: 

$\left( x+1 \right)\frac{dy}{dx}+y=\ln x$, $y(1)=10$, es,

$\large y\left( x \right)=\frac{21}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$

Con intervalo de solución:

$I:\left \{ x\epsilon R|0 < x < \infty\right\}$

Si analizamos la función Solución General $y\left( x \right)=\frac{C}{x+1}+\frac{x\ln x}{x+1}-\frac{x}{x+1}$, por separado viendo que: $f\left( x \right)=-\frac{x}{1+x}$ ,   $g\left( x \right)=\frac{C}{1+x}$  y  $h\left( x \right)=\frac{x\text{Log}(x)}{1+x}$, podemos notar más evidentemente cual es el dominio de ésta, al notar con mayor claridad el dominio de cada una de sus componentes particulares.

A continuación ponemos las gráficas de cada una de las funciones que conforman la solución del PVI para el sistema NO Homogéneo, por separado y luego en conjunto, para analizar con más cercanía por qué el intervalo de solución se reduce a $latex (0,\infty )$:

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{f(x)}:x\in \mathcal{R}-\{-1\}$, es decir, son todos los números reales exceptuando “-1”.

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{g(x)}:x\in \mathcal{R}-\{-1\}$, es decir, son todos los números reales exceptuando “-1”. Como sabemos ésta parte de la solución del PVI, es la solución general del sistema homogéneo, que incluye a la gráfica anterior $f(x)$.

intervalo de solucion del problema de valores iniciales

El dominio de esta función es $D_{y(x)}:0<x<\infty$, es decir, son todos los números reales exceptuando los negativos y el CERO. Esto se debe a que la función “Logaritmo Natural”, no está definida para cero: ($\ln 0=\infty$).

Esto se pone en mayor evidencia si evaluamos la siguiente función:

intervalo de solucion del problema de valores iniciales

intervalo de solucion del problema de valores iniciales

Por último, Vemos que la forma de la gráfica solución la da las funciones $g\left( x \right)=\frac{C}{1+x}$Y $h\left( x \right)=\frac{x\ln x}{1+x}$, que al agregarles la función $f\left( x \right)=-\frac{x}{1+x}$, solo termina desplazándola un poco hacia abajo.

Ecuaciones Diferencial

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales


Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos, ver el Problema 30,

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Intervalo de solución para un Problema del Valor Inicial (PVI) de una ED lineal

Encontrar el intervalo de solución para un Problema del Valor Inicial la solución, siendo dicho intervalo de solución «, el intervalo más largo , para el Problema del Valor Inicial:

a)      $\frac{dT}{dt}=k(T-Tm)$,             $T(0)={{T}_{0}}$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 28).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que  , es una constante.

$\frac{dT}{dt}+P\left( t \right)T=f(t)$

$\frac{dT}{dt}-kT=-k{{T}_{m}}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( t \right)\mathbf{dt}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( t \right)dt}}$ , es: $P\left( t \right)=-k$.

${{e}^{-k\mathop{\int }^{}dt}}={{e}^{-kt}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dT}{dt}-kT=0$. Sustituimos en ${{T}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $P\left( t \right)=-k$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{T}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{T}_{c}}=C{{e}^{(-)-k\mathop{\int }^{}dt}}$

$=C{{e}^{kt}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $\text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }T={{T}_{0}}$ , de modo que:

Sustituyendo en:

${{T}_{c}}=C{{e}^{kt}}$

Tenemos:

${{T}_{0}}=C{{e}^{k(0)}}~\Rightarrow ~~{{T}_{0}}=C\left( 1 \right)~~\Rightarrow ~~C={{T}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

${{T}_{c1}}={{T}_{0}}{{e}^{kt}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{T}_{c}}=C{{e}^{kt}}$ y la solución particular  ${{T}_{c1}}={{T}_{0}}{{e}^{kt}}$

Intervalo de solución para un Problema del Valor Inicial

La función ${{T}_{c}}=C{{e}^{kt}}$ , tiene como dominio el intervalo:

$D_{T_{C}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Por tanto, la solución particular $T_{c1}=T_{0}e^{kt}$, tiene el mismo dominio:

$D_{T_{C1}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Notar que la solución particular solo involucra a las curvas que intersectan a $T(t)$, dentro del rango que estemos analizando. El valor de $C={{T}_{0}}$ , para la solución particular del PVI $\frac{dT}{dt}=kT$,  $T(0)={{T}_{0}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dT}{dt}-kT=-k{{T}_{m}}$. Para resolverla utilizamos la fórmula: ${{T}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: ${{e}^{\mathop{\int }^{}P\left( t \right)dt}}={{e}^{-kt}}$ (obtenido en el punto ii.) y $f\left( t \right)=-k{{T}_{m}}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{T}_{p}}=\frac{1}{{{e}^{-kt}}}\mathop{\int }^{}{{e}^{-kt}}(-k{{T}_{m}})dt$

$=\frac{{{T}_{m}}}{{{e}^{-kt}}}\mathop{\int }^{}{{e}^{-kt}}(-k)dt$

$=\frac{{{T}_{m}}}{{{e}^{-kt}}}[{{e}^{-kt}}]$

$={{T}_{m}}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$t=0;~~~~~~T={{T}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$T\left( t \right)=C{{e}^{kt}}+{{T}_{m}}$

Entonces, sustituyendo los valores iniciales
$T\left( 0 \right)={{T}_{0}}$

Tenemos:

${{T}_{0}}=C{{e}^{k(0)}}+{{T}_{m}}$

$\Rightarrow {{T}_{0}}=C(1)+{{T}_{m}}$

$\Rightarrow C={{T}_{0}}-{{T}_{m}}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$T\left( t \right)=C{{e}^{kt}}+{{T}_{m}}$

y la solución particular del PVI:
$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

El dominio de la solución $T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$ está en el intervalo:

${{D}_{i(t)}}:-\infty <t< \infty$

O dicho de forma más común, el dominio de la solución del PVI ($\frac{dT}{dt}=k(T-Tm)$,   $T(0)={{T}_{o}}$ ), es el intervalo: $(-\infty ,\infty )$. Notar que el valor de $C={{T}_{0}}-Tm$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial:

$\frac{dT}{dt}=k(T-Tm)$, $T(0)={{T}_{0}}$, es,

$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

Con intervalo de solución:

$D_{T_{C}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Intervalo de solución para un Problema del Valor Inicial: Analizando dos casos espacíficos

Para analizar el comportamiento de dos casos particulares de variación de T(t), con respecto del tiempo, mostramos las siguientes tablas y gráficas.

Intervalo de solución para un Problema del Valor Inicial

Sistema representado por:  $T\left( t \right)=25{{\text{e}}^{-2t}}$

En esta gráfica podemos ver que mientras $t\to \infty $, $T\left( t \right)\to 0$. Se trata de un proceso de descongelamiento y la temperatura se tiende a estabilizar, en este caso a CERO, por tratarse de un sistema Homogéneo; hablando de sistemas físicos representados mediante Ecuaciones Diferenciales,  cuando la función $f\left( x \right)=0$, se refiere, en general a que no existen factores externos al sistema que lo modifiquen.  Veamos el siguiente ejemplo:

Intervalo de solución para un Problema del Valor Inicial

Sistema representado por: $T\left( t \right)={{\text{e}}^{-2t}}(-3+28{{\text{e}}^{2t}})$

En este ejemplo el sistema recibe los efectos del medio ambiente al involucrarse la variable $Tm=28$. Notar que $f\left( x \right)=-kTm$, en la ecuación original: $\frac{dT}{dt}=k(T-Tm)$. En este caso, el sistema incrementa su temperatura cuando “t” aumenta. La temperatura de estabilidad es $Tm=28$. Esto se puede ver más claro en la gráfica de “Campo de direcciones”

Intervalo de solución para un Problema del Valor Inicial

 

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Intervalo de solución para un Problema del Valor Inicial: Cómo realiza simulaciones con software matemático de código abierto

Las simulaciones por computadora de los sismetas dinámicos modelados matemáticamente (con ecuaciones diferenciales), son imprescindibles, no solo para comprender mejor los conceptos aprendidos, si no para poder pronosticar comportamientos y tomar decisiones; todo ingeniero o científico necesita de los conociemientos para realizarlas.

En mi curso Ecuaciones Diferenciales con SAGE, te llevo paso a paso para que aprendas a simular cada tipo de ecuación diferencial así como poder reunir ese conocimiento mediante un proyecto final en donde desarrolamos la simulación de un sistema físico real. 😉

Para tener un conocimieto básico de cómo realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

Intervalo de solución para un Problema del Valor Inicial: Cómo aprender ED’s

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 27, ejercicio 29

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto(da click aquí)

Intervalo de Solución de una Ecuacion Diferencial como Problema del Valor Inicial.

Intervalo de solucion de una ecuacion diferencial

Intervalo de Solución de un Problema del Valor Inicial.

En este artículo aprenderás en 4 pasos a resolver una Ecuación Diferencial Lineal y encontrar su Intervalo de solución el cual fácilmente identificándolo gráficamente.

Ejercicios 2.3 Libro Dennis G. Zill (Problema 27).

Ecuacion Diferncial Lineal: Circuito LR en serie

Encontrar la solución para el problema del valor inicial (PVI), sujeta a:

a)      $ L\frac{di}{dt}+Ri=E$,             $ i(0)={{i}_{o}}$

Y, encontrar el intervalo I de solución.

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entre el coeficiente de $ \frac{di}{dt}$, que es “$ L$”, los coeficientes de los demás términos de la ecuación que dependen de “t”.

$ \frac{di}{dt}+P\left( t \right)i=f(t)$

$ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$

II.                  En el segundo paso encontramos el factor integrante: ,  

El valor de P(t) en $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}$, $ P(t)=\frac{R}{L}$.

$ {{e}^{\frac{R}{L}\mathop{\int }^{}dt}}={{e}^{\frac{R}{L}t}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$ \frac{di}{dt}+\frac{R}{L}i=0$. Sustituimos en $ {{i}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $ P(t)=\frac{R}{L}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{i}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{\text{i}}_{c}}=C{{e}^{-\frac{R}{L}\mathop{\int }^{}dt}}$

$ =C{{e}^{-\frac{R}{L}t}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ \text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }{{\text{i}}_{c}}={{i}_{0}}$ , de modo que:

Sustituyendo en:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$

Tenemos:

$ {{i}_{0}}=C\left( 1 \right)~\Rightarrow ~~C={{i}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{i}_{c}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ y la solución particular  $ {{i}_{c1}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Intervalo de solucion de una ecuacion diferencial

La función $ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ , tiene como dominio más largo el intervalo:

$ D_{x_{c}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Por tanto, la solución particular $ i_{c1}=i_{0}e^{-\frac{R}{L}t}$, tiene el mismo dominio:

$ D_{x_{c1}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

tambien.

Es decir, el dominio de las funciones abarca todos los números reales. Notar que la solución particular solo involucra a las curvas que intersectan a

$ i(t)$, dentro del rango que estemos analizando.

El valor de $ C={{i}_{0}}$ , para la solución particular del PVI $ L\frac{di}{dt}+Ri=0$,  $ i(0)={{i}_{o}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$. Para resolverla utilizamos la fórmula: $ {{i}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}=\frac{R}{L}$ (obtenido en el punto ii.) y $ f\left( t \right)=\frac{E}{L}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{i}_{p}}=\frac{1}{{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{E}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{R}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}[{{e}^{\frac{R}{L}t}}]$

$ =\frac{E}{R}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$ t=0;~~~~~~i={{i}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Entonces, sustituyendo los valores iniciales
$ i\left( 0 \right)={{i}_{0}}$

Tenemos:

$ {{i}_{0}}=C{{e}^{-\frac{R}{L}(0)}}+\frac{E}{R}$

$ \Rightarrow {{i}_{0}}=C(1)+\frac{E}{R}$

$ \Rightarrow C={{i}_{0}}-\frac{E}{R}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

y la solución particular:
$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Intervalo de solucion de una ecuacion diferencial

El dominio de la solución $ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$ está en el intervalo:

$ D_{i(t)}:- \infty < t < \infty$

O dicho de forma más común, el dominio de la solución del PVI:

($ L\frac{di}{dt}+Ri=E$,   $ i(0)={{i}_{o}}$ ), es el intervalo: $ (-\infty ,\infty )$. Notar que el valor de $ C={{i}_{0}}-\frac{E}{R}$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial: $ L\frac{di}{dt}+Ri=E$, $ i(0)={{i}_{o}}$, es,

$ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$

Con intervalo de solución:

$ \Large I:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Para aprender a realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 28ejercicio 29

Quiero ejemplos de circuitos electricos RLC en serie click aquí

Quiero ejemplos de circuitos electricos RC en serie click aquí

Quiero otro ejemplos de circuitos electricos RL en serie click aquí

Quiero mas ejemplos de aplicaciones

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto (da click aquí)