Ecuacion Logistica modificada.

Ecuacion Logistica modificada.

Al terminar este arículo podrás identificar y resolver cualquier ecuacion logistica modificada, con los mismos cuatro pasos mencionados en el artículo: Ecuaciones Diferenciales no Lineales, una de las variaciones más comunes de la ecuación logística, verás que dichos cuatro pasos, pueden ser aplicados a cualquier variación de una ED logística e identificarás el modelo logístico standar del modelo logístico modificado.

En matemáticas, como en cualquier situación de la vida cotidiana que se desea aprender, la mejor estrategia es entender el mismo concepto desde varias perspectivas para verlo como un todo, asegurandonos de que lo hemos comprendido y así, adquirir verdaderamente el conocimiento.

De éste modo se pueden sentar bases sólidas para entender conceptos más profundos, como dice Scott Young, reconocido a nivel global como genio del aprendizaje acelerado en su curso Holístic Learning:

Lo llamo aprendizaje holístico porque te desafía a ver el aprendizaje como un todo, en vez de una lista de hechos memorizados. Las personas inteligentes tienden a hacer pocas distinciones entre las ramas del conocimiento y pueden facilmente realcionar un conjunto de conceptos con otros

refiriendose a cómo ver el concepto de aprendizaje, en particular o en general cualquier conjunto de conocimientos.

ecuacion logistica modificada
Figura 1. Mujer de 25 años? mujer de mas de 70 años?

«Si entiendes algo en solo un sentido, entonces no lo entiendes para nada. El secreto de lo que significa cualquier cosa para nosotros, depende de cómo lo hemos conectado a todas las otras cosas que sabemos. Representaciones bien conectadas, te permite girar las ideas alrededor de tu mente para imaginar las cosas desde muchas perspectivas hasta que encuentras la que funciona para ti. Y eso es lo que significa pensar».

Marvin Minsky

MODIFICACIONES DEL MODELO LOGíSTICO

El modelo logístico en ecuaciones diferenciales puede verse no solo como un modelo de crecimiento de población si no que también, con alguna modificación, estas ecuaciones pueden representar modelos de decrecimiento poblacional natural, crecimiento y/o decrecimiento por influencia externa, etc.

Ecuación Logística standar.

$\frac{dP}{dt}=P(r-\frac{r}{k}P)$

Ecuaciones Logisticas modificadas.

Si $ a = r$  y  $ b = -\frac{r}{k}$, tenemos:

  • Emigración humana o desabastecimiento de productos: $ \frac{dP}{dt}=P(a – b P) – h$, donde: $ h > 0$ es constante
  • Inmigración humana o abastecimiento de productos: $ \frac{dP}{dt}=P(a – b P) + h$, donde: $ h > 0$ es constante

Modelado de poblaciones con diferentes condiciones:

  • $ \frac{dP}{dt}=P(a – b P) – cP$  cuando la Emigración depende de la población, donde: $c>0$
  • $ \frac{dP}{dt}=P(a – b P) + ce^{-kP}$ cuando la Inmigración varía segun el tamaño de la población, donde: $c>0$ y $k>0$
  • $ \frac{dP}{dt}=P(a – b ln \left( P \right) )$ Ecuación diferencial de Gompertz. Modela crecimiento o decrecimiento de tumores  y ciertas prediciones actuariales

TODAS las anteriores modificaciones a la ecuación logística pueden ser resueltas analíticamente con la metodo logía de 4 pasos presentada a continuación. =)

METODOLOGIA PARA RESOLVER ANALITICAMENTE UNA ECUACION LOGISTICA ESTÁNDAR O MODIFICADA

PASOS:

Sigue leyendo

Ecuaciones Diferenciales No Lineales

Ecuaciones Diferenciales No Lineales: Ecuación Logística

Al terminar el siguiente artículo podrás resolver cualquier Ecuación Diferencial No lineal en su version de Ecuación Logística de manera ordenada y en solo 4 pasos. Además contarás con el código de MATHEMATICA para simularlas. =)

La técnica presentada para resolver la ecuación logística mediante pasos definidos (descrita más adelante), tiene el objetivo principal de acortar la curva de aprendizaje haciendo asequible el conocimiento repetitivo mediante el estructurar el mismo.

Esto puede ser aprovechado por el estudiante o profesor novicio para dedicarse a obtener un CONOCIMIENTO PROFUNDO del tema al utilizar la técnica para INDAGAR en la APLICACIONES del mismo.

La Dra. Joe Boaler profesora de matematicas en la Universidad de Stanford dice:

Las matemáticas …, no se trata de respuestas correctas o equivocadas sin NTERPRETACIÓN, SIN oportunidad para la CREATIVIDAD…

(curso: How to learn Math, for students), refiriendose a la importancia de vincular las matemáticas con conceptos VISUALES o, mejor aún, conceptos de la vida real para encontrale un significado, poder interpretarlas, ENTENDERLAS y crear con ellas.

ecuaciones diferenciales no lineales

Figura 1. Conecciones entre los métodos para encontrar el volumen de una pirámide trunca y el áres de un trapezoide.

METODOLOGIA PARA RESOLVER ANALITICAMENTE UNA ECUACION LOGISTICA

PASOS:

  1. Escribir la Ecuación Logística separando sus variables en la ecuación. Es decir:
    1. Tenemos la ecuación logística general:

$ \frac{dP}{dt} = P \left( r – \frac{r}{K} P \right)$

O en su versión reducida:

$ \frac{dP}{dt} = P (a – b P)$

b. Escribimos la ED separando sus variables:

$ \frac{dP}{P \left( r – \frac{r}{K} P \right)} = {dt}$

II. Analizamos la función racional del primer miembro ($ \frac{p (x)}{q(x)} = {dt}$) e identificamos las integrales a resolver.

Para resolver un ED Logística, necesitamos recordar cómo INTEGRAR una función racional. Para este fin, describimos una secuencia de pasos a seguir que la desarrollamos en el artículo: Integración de Funciones Racionales; parte de ésta secuencia se utiliza para resolver las ED que ahora nos ocupan.

Análisis de la función racional para integrar ED Logísticas

  1. Sefactoriza el denominador de la función racional y se identifica qué tipo de integral es. Para éste caso las más comunes son:
    1. Integral del tipo logarítmica: $ \int \frac{dT}{T}$
    2. Integral por fracciones parciales, ejemplo: $ \int\frac{constante}{polinomio} = \int\frac{A_1}{factor_1} + \int \frac{A_2}{factor_2} + \ldots$
    3. Integral:
      • Arco Tangente: $ \int \frac{dT}{1 + T^2}$
      • Arco Tangente hiperbólica: $ \int \frac{dT}{1 – T^2}$
      • del tipo: $ \int \frac{dT}{a^2 – T^2}$
    4. Una combinación de algunas y/o todas las integrales de los puntos anteriores al descomponer en fraciones mas simples (por ejemplo fracciones parciales).
    5. Por último, recordar que es posible encontrar una integral mas simple que las mencionadas al realizar la factorizacion del denominador de la funcion racional, por ejemplo, encontrar una integral de la forma: $ \int T^n dT$
  2. Este procedimiento es una guía ordenada para abordar este tipo de ED’s, sin embargo las integrales a resolver pueden ser de más tipos, por lo cual habrá que revisar las tablas de integración al toparnos con integrales diferentes a las acá mencionadas.

III. Resolvemos las integrales mediante la técnica e integración correspondiente al tipo de integral:

  1. $ \int \frac{dT}{T} = {Ln} | T | + C$
  2. Fracciones Parciales:
    1. Factores lineales en el denominador. Por cada factor lineal escribimos una fracción del tipo: $ \frac{A}{a x + b}$
    2. Factores cuadráticos en el denominador. Por cada factor cuadratico escribimos: $ \frac{Ax + B}{ax^{2} + bx + c}$

Nota: Ver el artículo: Integración de Funciones Racionales para mayor detalle

    C.                 Integral:

  • $ \int \frac{dT}{1 + T^{2}} = {arcTan} (T) + C$
  • $ \int \frac{dT}{1 – T^{2}} = {arcTanh} (T) + C$
  • $ \int \frac{dT}{a^2 – T^{2}} = \frac{1}{2 T} {Ln} \left|\frac{a + T}{a – T} \right| + C$,    $ | T | \neq a$   ó
  • $ \int \frac{dT}{a^2 – T^2} = \frac{1}{a} {arcTanh} \left(\frac{T}{a} \right) + C$,     $ | T | < a$

D.                Combinacion de las anteriores.

E.                $ \int T^n {dT} = \frac{T^{n + 1}}{n + 1} + C$

 IV. Resolvemos el PVI, mediante la sustitución de los valores iniciales en la función solución.

EJEMPLOS RESUELTOS DE ECUACIONES DIFERENCIALES NO LINEALES

Ecuación Logística

Ejemplo 1. Ejercicios 3.2. Libro Dennis G. Zill (Problema 1)

La cantidad $ N (t)$ de supermercados del país que están usando sistemas de revisión computarizados se describe por el problema con valores iniciales

Sigue leyendo