Aplicaciones Ecuaciones Diferenciales. Marcapasos de Corazón

Marcapasos de Corazón

Si aprendes lo que te voy a enseñar en éste artículo sobre Aplicaciones Ecuaciones Diferenciales, conocerás una manera ordenada de Cómo ANALIZAR y MODELAR matemáticamente un Sistema Físico de Primer Orden, aplicando Ecuaciones Difernciales Ordinarias

Además, utilizarás el Método de Separación de Variables de 3 pasos propuesto en este sitio para simular un marcapaso del corazón.

 

Cualquier intento para diseñar un sistema debe comenzar con una predicción de su desempeño antes de que el sistema pueda ser diseñado en detalle o construido. Tal predicción es basada sobre una descripción matemática de las características dinamicas del sistema. Esta descripción matemática es llamada Modelo Matemático. Para muchos sistemas físicos, los modelos matemáticos utiles que los describen, están en términos de Ecuaciones Diferenciales.

Katsuhiko Ogata

Metodología para Modelado de un Sistema Físico de Primer Orden

Como vimos en el artículo: Ecuaciones Diferenciales Aplicadas; Modelos No lienales. La metodología para modelar un sistema físico propuesta por el autor Kasuhico Ogata en su libro System Dynamics es la siguiente: Sigue leyendo

Ecuacion Diferencial lineal Homogenea y su sistema no homogeneo

Ecuacion Diferencial lineal homogénea y su sistema no homogéneo; de 1er orden

Con el método de los 4 pasos que puedes encontrar en este link: ED lineal de 1er orden, click aquí, podrás resolver cualquier ecuacion diferencial lineal homogenea.

Te recomiendo que uses el método varias veces antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito. Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias Ver el siguiente link: Learn More, Study Less: The Video Course. Se que les servirá mucho.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 24). Tomado de: Dennis G. Zill Ed 7ma.

$({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$ , que es “$(x^{2} – 1)$ ”, los coeficientes de los demás términos de la ecuación que dependen de “$x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{{{(x+1)}^{2}}}{(x-1)(x+1)}$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Sustituimos el valor de P($x$) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{2}{{{x}^{2}}-1}$. El desarrollo de la las fracciones parciales se muestra al final del ejercicios, así como las formulas integrales y el manejo de las funciones trascendentes.

${{e}^{2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}={{e}^{2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$={{e}^{2\mathop{\int }^{}\frac{dx}{2\left( x-1 \right)}-2\mathop{\int }^{}\frac{dx}{2\left( x+1 \right)}}}$

$={{e}^{\mathop{\int }^{}\frac{dx}{\left( x-1 \right)}-\mathop{\int }^{}\frac{dx}{\left( x+1 \right)}}}$

$={{e}^{\ln |x-1|-\ln |x+1|}}$

$={{e}^{\ln \frac{|x-1|}{|x+1|}}}$

$=\frac{x-1}{x+1}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=0$. Sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{2}{{{x}^{2}}-1}$, encontrado en el primer paso,  y desarrollamos. Notar que el resultado de ${{y}_{c}}$, es el recíproco del factor integrante multiplicado por C. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}$

$=C{{e}^{-2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$=C{{e}^{-\ln \left| x-1 \right|+\ln |x+1|}}$

$=C{{e}^{\ln \frac{|x+1|}{|x-1|}}}$

$=C\frac{x+1}{x-1}$

Gráfica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=C\frac{x+1}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular ${{y}_{c1}}=\frac{2(x+1)}{x-1}$ donde $C=2$. Notar que la función ${{y}_{c}}=C\frac{x+1}{x-1}$  , tiene como dominio más largo el intervalo: $1<x<\infty $. Sin embargo, debido a la no definición de la gráfica en $-1 < x < 1$, se puede tomar éste intervalo para hacer evidente ésta no definición. El intervalo más largo de definición de UNA solución es: $(1, \infty )$. El intervalo de definición de una solución, por definición (ver: Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{x-1}{x+1}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x+1}{x-1}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo.

${{y}_{p}}=\frac{x+1}{\text{x}-1}\mathop{\int }^{}\frac{x-1}{x+1}(\frac{x+1}{x-1})dx$

$=\frac{x+1}{\text{x}-1}\mathop{\int }^{}dx$

$=\frac{x+1}{\text{x}-1}[x]$

$=\frac{x(x+1)}{\text{x}-1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular $\text{y}\left( \text{x} \right)=\frac{(x+1)(2+x)}{x-1}$,

Donde: $C=2$. Nuevamente notar que la función $y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$ , tiene como dominio el intervalo: $(-1,1)$ y como dominio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$, es:

$y=\frac{(c+x)(x+1)}{x-1}$

Con intervalo de solución:

Nota: $latex c$ puede ser negativa si se toma el valor negativo del valor absoluto del logaritmo en el paso III.

$\Large I:\left \{ x\epsilon \mathbb{R}\mid -1< x< 1 \right \}$

Recordar:

Fraciones parciales

$\frac{1}{{{x}^{2}}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$=A\left( x+1 \right)+B(x-1)$

$=Ax+A+Bx-B$

$=(A+B)x+A-B$

Igualando los términos semejantes de la derecha con los de la izquierda.

No hay términos en “x” así que:

$A+B=0$ $\Rightarrow A=-B$

Para las variables A, B solas, está el “1”

$A-B=1$  $\Rightarrow A=1+B$

Por tanto:

$-B=1+B$

$2B=-1$

$B=-\frac{1}{2}$ $\Rightarrow A=\frac{1}{2}$

De donde:

$\frac{1}{{{x}^{2}}-1}=\frac{\frac{1}{2}}{x-1}-\frac{\frac{1}{2}}{x+1}$

$\frac{1}{{{x}^{2}}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_________________________________________________

Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

Ecuacion Diferencial lineal homogenea y no homogenea

Con el método de los 4 pasos podrás resolver cualquier ED lineal de 1er orden.

Te recomiendo que uses el método varias veces para resolver cualquier ecuacion diferencial lineal homegenea y no homogenea, usándolo antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito.

Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias. Espero te sirva.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 23). Tomado de: Dennis G. Zill Ed 7ma.

$x\frac{dy}{dx}+\left( 3x+1 \right)y={{e}^{-3x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de $P\left( x \right)dx$en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$P(x)=\frac{(3x+1)}{x}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{3x+1}{x}dx}}={{e}^{3\mathop{\int }^{}dx+\mathop{\int }^{}\frac{1}{x}dx}}$

$={{e}^{3x+\ln x}}$

$=\text{x}{{e}^{3x}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\left( 3x+1 \right)}{x}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{3x+1}{x}dx}}$

$=C{{e}^{-3\mathop{\int }^{}dx-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-3x-\ln x}}$

$=C{{e}^{-3x+\ln {{x}^{-1}}}}$

$=C{{x}^{-1}}{{e}^{-3x}}$

$=\frac{C{{e}^{-3x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular ${{y}_{c1}}=-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}$ donde $C=-{{e}^{\frac{3}{2}}}$. Notar que la función ${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$ , tiene como dominio más largo el intervalo: $0<x<\infty $.</x<\

El intervalo más largo de definición de UNA solución es: $(0~,\infty )$, aunque el intervalo para la función es: $y:\{x\in \mathbb{R}-\left( 0 \right)\}$, o dicho de otra forma más sencilla, el valor de la función $y$, es: $\left( -\infty ,0 \right);(0,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}Q\left( x \right)dx}}=\text{x}{{e}^{3x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-3x}}}{x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}x{{e}^{3x}}(\frac{{{e}^{-3x}}}{x})dt$

$=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}dx$

$=\frac{1}{x{{e}^{3x}}}[x]$

$={{e}^{-3x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular $y\left( x \right)={{\text{e}}^{-3x}}-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}-\frac{{{\text{e}}^{-3x}}}{2x}$, Donde: $C=-\frac{1}{2}-{{e}^{\frac{3}{2}}}$. Nuevamente notar que la función $y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$ , tiene como dominio el intervalo (más largo): 0 Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, es:

$\Large y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Ecuacion diferencial lineal homegenea y no homogenea (Conceptos a recordar)

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_____________________________________________________________________________________

ecuacion diferencial lineal ejemplos. Zill Capítulo 2.3 (prob 22)

Ecuacion diferencial lineal ejemplos

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Resolución de ED lineales Libro de Dennis G. Zill Ed 7ma.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 22)

$\frac{dP}{dt}+2tP=P+4t-2$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de , que es “ ”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dP}{dt}+Q\left( t \right)y=f(t)$

$\frac{dP}{dt}+2tP-P=4t-2$

$\frac{dP}{dt}+(2t-1)P=4t-2$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( t \right)\mathbf{dt}}}$,  

Para esto sustituimos el valor de Q($t$) en ${{e}^{\mathop{\int }^{}Q\left( t \right)dt}}$,   donde:$Q(t)=2t-1$. Tener cuidado de no confundir la solución general $P(t)$, del problema con la $P\left( t \right)=P(x)$, de la fórmula general, aquí le hemos puesto $Q(x)$ al coeficiente del segundo término para evitar este problema. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}(2t-1)dt}}={{e}^{2\mathop{\int }^{}tdt-\mathop{\int }^{}dt}}$

$={{e}^{{{t}^{2}}-t}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dP}{dt}+(2t-1)P=0$ . Para resolverla sustituimos en la fórmula: ${{P}_{c}}=C{{e}^{-\mathop{\int }^{}Q\left( t \right)dt}}$, los valores de $Q(t)=(2t-1)$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{P}_{c}}=C{{e}^{-\mathop{\int }^{}Q\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{P}}_{c}}=C{{e}^{-\mathop{\int }^{}\left( 2t-1 \right)dt}}$

$=C{{e}^{-2\mathop{\int }^{}tdt+\mathop{\int }^{}dt}}$

$=C{{e}^{-{{t}^{2}}+t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{P}_{c}}=C{{e}^{-{{t}^{2}}+t}}$

ecuacion diferencial lineal ejemplos

Se puede ver una solución particular ${{P}_{c1}}=-3{{\text{e}}^{t-{{t}^{2}}}}$ donde $C=1-3\pi $. Notar que la función
${{P}_{c}}=C{{e}^{-{{t}^{2}}+t}}$ , tiene como dominio más largo el intervalo: $-\infty <x<\infty $. El intervalo más largo de definición de UNA solución es: $(-\infty ~,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dP}{dt}+(2t-1)P=4t-2$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{P}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}Q\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}Q\left( t \right)dt}}f(t)dt$, donde: ${{e}^{\mathop{\int }^{}Q\left( t \right)dt}}={{e}^{{{t}^{2}}-t}}$ (obtenido en el punto ii.) y $f\left( t \right)=4t-2$ obtenido en el punto i. Observe que la integral: $\mathop{\int }^{}{{e}^{{{t}^{2}}-t}}(4t-2)dt$ , pudo haberse dividido en dos ($4\mathop{\int }^{}t{{e}^{{{t}^{2}}-t}}+2\mathop{\int }^{}{{e}^{{{t}^{2}}-t}}dt$), e integrarse por partes, pero el procedimiento sería unos pasos más largos. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{P}_{p}}=\frac{1}{{{e}^{{{t}^{2}}-t}}}\mathop{\int }^{}{{e}^{{{t}^{2}}-t}}(4t-2)dt$

$=\frac{1}{{{e}^{{{t}^{2}}-t}}}2\mathop{\int }^{}{{e}^{{{t}^{2}}-t}}(2t-1)dt$

$=\frac{1}{{{e}^{{{t}^{2}}-t}}}2[{{e}^{{{t}^{2}}-t}}]$

$=2$

Gráfica de la familia de soluciones del sistema no homogéneo:

$P=C{{e}^{-{{t}^{2}}+t}}+2$

ecuacion diferencial lineal ejemplos

Se puede ver una solución particular $P\left( t \right)=2-5{{\text{e}}^{t-{{t}^{2}}}}$,

Donde: $C=-5$. Nuevamente notar que la función $P=C{{e}^{-{{t}^{2}}+t}}+2$ , tiene como dominio el intervalo (más largo): $(-\infty ,\infty )$ . Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dP}{dt}+2tP=P+4t-2$, es:

$P=C{{e}^{-{{t}^{2}}+t}}+2$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid -\infty < x< \infty  \right \}$

Ecuacion diferencial lineal ejemplos

Recordar:Logaritmos y exponenciales

$aln x=ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=ln y$ y además $ln y={{log }_{e}}y$ recordamos que la función $x={{log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ln y=ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{ln y}}=y$

______________________________________________

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

El siguiente problema de Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19, se desarrolla el método que proponemos para resolver cualquier ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método: Factor Integrante

1. Forma Standard:  $ \frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: $ {{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

3.                                   $ {{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4.                                   $x {{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

$ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $ \frac{dy}{dx}$, que es “$ x+1$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$ \frac{dy}{dx}+P\left( x \right)y=f(x)$

$ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$

II.                    En el segundo paso encontramos el factor integrante:

 $ {{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

Para esto sustituimos el valor de $P(x)$ en $ {{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$ P(x)=\frac{x+2}{x+1}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y la división entre polinomios, vea el final del ejercicio.

$ {{e}^{\mathop{\int }^{}\frac{x+2}{x+1}dx}}={{e}^{\mathop{\int }^{}\text{dx}+\mathop{\int }^{}\frac{1}{x+1}dx}}$

$ ={{e}^{x+\ln (x+1)}}$

$ ={{e}^{x}}{{e}^{\ln (x+1)}}$

$ =\left( \text{x}+1 \right){{e}^{x}}$

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$ \frac{dy}{dx}+\frac{x+2}{x+1}y=0$ . Para resolverla sustituimos en la fórmula: $ {{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $ P(x)=\frac{x+2}{x+1}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{y}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{x+2}{x+1}dx}}$

$ =C{{e}^{\mathop{\int }^{}\text{dx}-\mathop{\int }^{}\frac{1}{x+1}dx}}$

$ =C{{e}^{-\text{x}-\ln (x+1)}}$

$ =C{{e}^{-\text{x}+\ln {{(x+1)}^{-1}}}}$

$ =C{{e}^{-\text{x}}}{{e}^{\ln {{(x+1)}^{-1}}}}$

$ =C{{(x+1)}^{-1}}{{e}^{-\text{x}}}$

$ =C\frac{{{e}^{-\text{x}}}}{(x+1)}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $ y=-\frac{6{{e}^{1-x}}}{1+x}$ donde $ C=-6e$. Notar que la función
$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$ , tiene como dominio el intervalo: $ -1\le x\le \infty $ (analizar el denominador de la función $ \frac{C{{e}^{-\text{x}}}}{(x+1)}$, pues aunque se nota una gráfica que aparece antes de -1 (gráfica en verde), esta también está indefinida en -1, por eso el intervalo más largo de definición de UNA solución es: $ (-1~,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $ {{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: $ {{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\left( \text{x}+1 \right){{e}^{x}}$ (obtenido en el punto ii.) y $ f\left( x \right)=\frac{2x{{e}^{-x}}}{x+1}$ obtenido en el punto iPara ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}\mathop{\int }^{}\left( \text{x}+1 \right){{e}^{x}}\frac{2x{{e}^{-x}}}{x+1}dx$

$ =\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}\mathop{\int }^{}2xdx$

$ =\frac{2}{\left( \text{x}+1 \right){{e}^{x}}}\mathop{\int }^{}xdx$

$ =\frac{2}{2\left( \text{x}+1 \right){{e}^{x}}}{{x}^{2}}$

$ =\frac{{{x}^{2}}{{e}^{-x}}}{\left( \text{x}+1 \right)}$

Gráfica de la familia de soluciones del sistema no homogeneo:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $y\left( x \right)=-\frac{6{{\text{e}}^{1-x}}}{1+x}-\frac{{{\text{e}}^{-x}}}{1+x}+\frac{{{\text{e}}^{-x}}{{x}^{2}}}{1+x}$, Donde: $ C=-1-6e$. Nuevamente notar que la función $ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$ , tiene como dominio el intervalo: $ (-1~,\infty )$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$, es:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

 

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

División entre Polinomios

$ \frac{x+2}{x+1}=1+\frac{1}{x+1}$

Ya que:

$ x+1\overset{1}{\overline{\left){\frac{x+2}{\frac{-x-1}{1}}}\right.}}$

Lo que intenté escribirles es el algoritmo de la división, el “1”en la parte superior (sobre la “x”), es el entero resultante de dividir $ \frac{x}{x}=1$, este es el “1” que usamos como parte del resultado, la línea debajo de $ x+2$, es el resultado de multiplicar el “1” de la parte superior por $ x+1$ e ir acomodando los términos debajo de sus correspondiente del dividendo, que en este caso es el mencionado término: $ x+2$, al final, al cambiarle los signos a este resultado y sumarlos al mismo dividendo vemos que: $ x+2-x-1=1$, este “1” es el que aparece hasta abajo, es el residuo, el cual es, junto con el divisor, la fracción: $ \frac{1}{x+1}$, sumada al final.