Transformada de Laplace -Integral Compleja

¿Cómo resolver una integral del tipo: $\int e^{-st} \sin{\left(at\right)} dt$?

Con éste artículo las integrales para resolver transformada de Laplace -Integral compleja, serán un día de campo. En éste artículo aprenderás a resolver de una vez y para siempre, la integral de la forma:

  • $\large \int e^{-st}\sin{\left(at\right)}dt$ o
  • $\large \int e^{-st}\cos{\left(bt\right)}dt$

por los métodos

  • Integracion de funciones exponenciales complejas
  • Integración por partes
  • Además incluiremos los códigos de SAGEMATH, para que no te equiviques

Las resolveremos como integrales definidas, al aplicar Laplace, por supuesto.

Terminando el artículo no volverás a tener dudas de cómo resolver este tipo de integrales, esenciales para la Transformadas de Laplace, las Series de Fourier, la Transformada Integral, entre otros.

Primero, desarrollamos paso a paso en los primeros $2$ ejercicios y luego vamos más rápido para mostrar la agilidad de éste método. 😉

Integral Compleja

Metodología utilizada

  • Conversión de la integral trigonométrica a integral de una función exponencial compleja: complexificación.
  • Resolvemos la integral para la función compleja obtenida
  • Extraer la parte real de una función exponencial compleja
Sigue leyendo

Metodo de Euler para Ecuaciones Diferenciales con SAGEMATH

Al terminar este artículo podrás resolver TODAS tus ecuaciones diferenciales lineales o NO lineales de 1er oeden, con valores iniciales, mediante el Método de Euler con SAGEMATH.

Metodo euler con sagemath
FIGURA. METODO DE EULER CON SAGEMATH

El método de Euler es implementado en SAGEMATH el cual es un lenguaje de programación de alto nivel, construído sobre python y otros lenguajes de acceso libre, es decir; SAGEMATH es software libre y se utiliza básicamente para la simulación científica. La programación y simulación con dicho lenguaje es muy sencilla, incluso podrás simular tus ejercicios aquí mismo.

Se ponen ejemplos resueltos con SAGEMATH de los ejercicios vistos en artículos anteriores. Ver los enlaces específicos para cada artículo en cada ejercicio resuelto.

Para saber cómo editar (utilizar) las celdas de SAGEMATH, ve al siguiente enlace: Simulación con SAGEMATH, da click aquí

Para entender a detalle el código de SAGEMATH para resolver ecuaciones diferenciales con valores iniciales mediante el método de Euler ve la siguiente presentación: De donde sale el método de Euler.

El código para el Método de Euler escrito en SAGEMATH es el siguiente:

CÓDIGO PARA EL MÉTODO DE EULER CON SAGEMATH

### Metodo de Euler
def Euler(fun, a, b, N, y0):
    h = (b - a)/N
    x = [a]
    y = [y0]

    for k in range(N):
        x.append(x[k]+h)
        y.append(y[k]+(h)*fun(x[k], y[k]))
    return list(zip(x, y))

Para Utilizar las celdas para simular otras ecuaciones diferenciales solo es necesario editar el apartado de «datos iniciales» y «Solución numérica para h=…». Al final de este artículo les dejo una versión simplificada de esta celda para que la modifiquen y puedan simular otras ecuaciones diferenciales de primer orden con valores iniciales. 😉

Sigue leyendo

Aplicaciones Ecuaciones Diferenciales. Marcapasos de Corazón

Marcapasos de Corazón

Si aprendes lo que te voy a enseñar en éste artículo sobre Aplicaciones Ecuaciones Diferenciales, conocerás una manera ordenada de Cómo ANALIZAR y MODELAR matemáticamente un Sistema Físico de Primer Orden, aplicando Ecuaciones Difernciales Ordinarias

Además, utilizarás el Método de Separación de Variables de 3 pasos propuesto en este sitio para simular un marcapaso del corazón.

Cualquier intento para diseñar un sistema debe comenzar con una predicción de su desempeño antes de que el sistema pueda ser diseñado en detalle o construido. Tal predicción es basada sobre una descripción matemática de las características dinamicas del sistema. Esta descripción matemática es llamada Modelo Matemático. Para muchos sistemas físicos, los modelos matemáticos utiles que los describen, están en términos de Ecuaciones Diferenciales.

Katsuhiko Ogata

Metodología para Modelado de un Sistema Físico de Primer Orden

Como vimos en el artículo: Ecuaciones Diferenciales Aplicadas; Modelos No lienales. La metodología para modelar un sistema físico propuesta por el autor Kasuhico Ogata en su libro System Dynamics es la siguiente: Sigue leyendo

Ecuaciones diferenciales por sustitucion

Ecuaciones Diferenciales por sustitución ejemplos (reducidas a variables separables)

Despúes de terminar de leer éste artículo podrás tener una idea clara de cómo abordar problemas de ecuaciones diferenciales cuando pueden ser reducidas a variables separables, además de contar con una metodología que te ayude a resolverlas.

La intiución es una parte muy importante en las matemáticas y la resolución de problemas. Según Sebastian Thrun, vice presidente de Google y el inventor de los Google glasses, dice que la intuición en la resolución de problemas es muy importante para llegar al entendimiento profundo de los mismos.

«La intuición nos perimte realizar una evaluacvión de un problema cuando hay numeros involucrados…», dice Sebastian.

Al final, ver el mundo desde un punto de vista intuitivo (no necesarimente racional, si no con un sentido de entendimiento sutil), nos ayudará a tomar los caminos necesarios para la resolución del problema; ésto en última instancia es pensar como un matemático, segun dice Thrun.

Por experiencia personal, y seguramente de uds como lectores, sabemos que es mucho más fácil saber cómo abordar un problema si tenemos una visión intuitiva de cómo se comporta y cómo podemos modelarlo y/o manipular su modelo para resolverlo.

El ejercicio de éste «don» nos permitirá desarrollar ese pensamiento matemático, que nos hace falta para la comprención profunda de los conceptos o fenómenos físicos.

La mente intuitiva es un don sagrado, y la mente racional es un fiel sirviente. Hemos creado una sociedad que honra al sirviente y ha olvidado el don.

Albert Einstein

ecuaciones diferenciales por sustitucion
Figura 1. El área bajo la curva de la función seno (o coseno), es fácilmente aproximable si nos damos cuenta que podemos calcular el área de los rectángulos cuyas alturas coinciden con ella.

Un ejemplo interactivo de las sumas de Riemann se encuentra en la celda de SAGEMATH, dale click a Evaluate para verlo. 😉

Metodología de 4 pasos para resolver ecuaciones diferenciales reducidas a variables separables

Sigue leyendo

ECUACIONES DIFERENCIALES SEPARABLES

Ecuaciones Diferenciales Separables

ECUACIONES DIFERENCIABLES SEPARABLES

Si lees el siguiente artículo hasta el final conocerás varios trucos para resolver ecuaciones diferenciales separables (sobre todo para integrar funciones, que aparecen de forma recurrente), mediante una metodología de 3 pasos de fácil aplicación.

El aprendizaje mediante la resolución de problemas es ampliamente utilizado en ciencias para desarrollar habilidades en los alumnos. Al utilizar ésta metodología se debe considerar que el cometer errores es fundamental para el aprendizaje pues se logran dos cosas:

1.- El crecimiento del cerebro en término de sus conexiones neuronales mediante la sinapsis

2.- Ser más inteligente.

Esto lo dice la Profesora Karol Dwek, profesora de psycología por la Universidad de Stanford, durante una entrevista para el curso online: How to learn math de la Universidad de Stanford, durante el tema Teaching for a Growth Minset.

De ésta forma, es importante ver que durante el proceso de aprendizaje individual, el cometer errores significa CRECER en INTELIGENCIA, más que verlo como por falta de capacidad del alumno o maestro, pues es en ese momento cuando, al lidear con el error, se generan más conexiones neuronales.

Metodología para resolver ecuaciones diferenciales separables

  1. La ecuación diferencial se escribe en la FORMA ESTÁNDAR propia de una ecuación diferencial ordinaria de primer orden:

$ \Large \frac{{dy}}{{dx}} = f (x, y)$

Ejemplo:

$ \frac{{dy}}{{dx}} = \frac{3 x^2 + 4 x + 2}{2 (y – 1)}$

Donde:

$ f (x, y) = \frac{3 x^2 + 4 x + 2}{2 (y – 1)}$

2. SEPARAMOS LAS VARIABLES de acuerdo al criterio visto en el artículo: Cómo resolver una ecuación diferencial de primer orden separable.

$ M {dx} = N {dy}$

Donde:

$ M = f (x)$  y $N = f (y)$

3. Por último, INTEGRAMOS ambos miembros de la ecuación mediante las fórmulas y ténicas conocidas del cálculo integral (Para referencia de cómo integrar funciones racionales dar click aquí)

Ecuaciones Diferenciales Separables Ejercicios Resueltos

Ejemplo 1, Problema del Valor Inicial (PVI)

Sigue leyendo