Intervalo de solucion ecuaciones diferenciales. Problema de valores iniciales (PVI)

Intervalo de solucion ecuaciones diferenciales

Encontrar el intervalo de solución más largo «, para el Problema del Valor inicial:

a)      ${{y}^{‘}}+\left( \tan x \right)y={{\cos }^{2}}x$,             $ y\left( 0 \right)=-1$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 30).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que $ f(x)$ , es una constante.

$ \frac{dy}{dx}+P(x)y=f(x)$

$ \frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$

II.                  En el segundo paso encontramos el factor integrante: $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

El valor de $P(x)$ en ${{e}^{{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\tan x$.

${{e}^{{\int }^{}\tan xdx}}={{e}^{-\ln (\cos x)}}$

$ ={{e}^{\ln {{(\cos x)}^{-1}}}}$

$ ={{(\cos x)}^{-1}}$

$ =\frac{1}{\cos x}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dy}{dx}+(\tan x)y=0$. Sustituimos en ${{y}_{c}}=C{{e}^{{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\tan x$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-{\int }^{}\tan xdx}}$

$ =C{{e}^{(-)-\ln (\cos x)}}$

$ =C{{e}^{\ln (\cos x)}}$

$ =C\cos x$

Solución Específica para el Sistema Homogéneo.

Intervalo de solucion ecuaciones diferenciales

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ x=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }y=-1$ , de modo que:

Sustituyendo en:

${{y}_{c}}=C\cos x$

Tenemos:

$ -1=C\cos 0~\Rightarrow ~~C=~-1$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{y}_{c1}}=-\cos x$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=C\cos x$ y la solución particular  ${{y}_{c1}}=-\cos x$

intervalo de solucion ecuaciones diferenciales
intervalo de solucion ecuaciones diferenciales
intervalo de solucion ecuaciones diferenciales

La función $ {{y}_{c}}=C\cos x$, tiene como dominio más largo el intervalo: \({{D}_{{y}_{c}}}:\big\{x \in R \mid – \frac{ \pi }{2} < x <  \frac{ \pi }{2}\big\}\). Sin embargo, la solución particular \( {{y}_{{c}_{1}}}=\cos x\), tiene el mismo dominio:

$D_{y_{c1}}:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

Es decir, la función del problema de valores iniciales, no tiene el mismo que el de la función, solución general. El valor de \(C\) es \(C=-1\), para le solución particular del PVI \(\frac{dy}{dx}+\big(\tan x\big) \ast y=0\), con \(y \left ( 0 \right ) = -1\).  Ver gráfica al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{{\int }^{}P\left( x \right)dx}}=\frac{1}{\cos x}$ (obtenido en el punto ii.) y $f\left( x \right)={{\cos }^{2}}x$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{{{(\cos x)}^{-1}}}{\int }^{}{{(\cos x)}^{-1}}({{\cos }^{2}}x)dx$

$ {{y}_{p}}=\cos x{\int }^{}{{(\cos x)}^{-1}}{{(\cos x)}^{2}}dx$

$ {{y}_{p}}=\cos x{\int }^{}\cos xdx$

$ {{y}_{p}}=\cos x\sin x$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

Intervalo de solucion ecuaciones diferenciales

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “$ x$” e “$ y$”, que vienen como condiciones iniciales y despejando “ C”.

$x=0;~~~~~~y=-1$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ y\left( x \right)=C\cos x+\cos x\sin x$

Entonces, sustituyendo los valores iniciales
$ y\left( 0 \right)=-1$

Tenemos:

$ -1=C\cos 0+\cos 0\sin 0$

$ \Rightarrow -1=C(1)+(1)(0)$

$ \Rightarrow -1=C+0$

$ \Rightarrow C=-1$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ y\left( x \right)=-\cos x+\cos x\sin x$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ y\left( x \right)=C\cos x+\cos x\sin x$

y la solución particular del PVI:
$ y\left( x \right)=-\cos x+\cos x\sin x$

El dominio de la solución $ y\left( x \right)=-\cos x+\cos x\sin x$ está en el intervalo: $D_{y(x)}:-\infty< x< \infty$ O dicho de forma más común, el dominio de las solución del PVI ($\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$,   $y\left( 0 \right)=-1$), es el intervalo abierto: $ (-\infty ,\infty )$, ver la gráfica anterior para notar la diferencia entre intervalo de solución del PVI e intervalo de la solución general. También, ver gráfica al final del ejercicio. Notar que el valor de $C=-1$ , para el problema del PVI, acá mostrado. Ver al final el desglose de los dominios de cada una de las gráficas que incluye la función solución del PVI (sistema no homogéneo).

Por tanto, la solución del Problema del Valor Inicial: 

$\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$, es,

$y\left( x \right)=-\cos x+\cos x\sin x$

Con intervalo de solución:

$\LARGE I:\left \{ x \epsilon R|-\infty< x< \infty \right \}$

 

En la siguiente gráfica se ve más claramente la diferencia entre el dominio de la función solución general y el dominio de la solución particular del problema de Valores Iniciales:

Como podemos notar, la función solución ($y\left( x \right)=-\cos x+\cos x\sin x$) del Problema de valores iniciales:  ( $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, $y\left( 0 \right)=-1$), está definida para todo el intervalo $(-\infty ,\infty )$, aunque la función, solución general, de la Ecuación Diferencial: $\frac{dy}{dx}+(\tan x)y={{\cos }^{2}}x$, no está definida para los valores múltiplos enteros de $\frac{\pi }{2}$, o en radianes (como aparece en las gráficas), son los múltiplos de: $1.57079633$ radianes.

Por tanto:

Para la solución general, el intervalo de solución es: $\left( -\frac{\pi }{2},\frac{\pi }{2} \right)$

Para la solución del PVI, el intervalo de solución es: $\left( -\infty ,\infty \right)$

Ecuaciones Diferenciales

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí para mas información

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales

 

Desarrollar tu intuición y confía en ella cuando estés estudiando ecuaciones diferenciales. Para esto necesitas preparar tu mente, es por esto que te invito a leer el artículo La técnica perfecta para aprender ecuaciones diferenciales, da click aquí, y practicar con varios ejercicios utilizando esta técnica, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tu mente entenderá con facilidad los conceptos más abstractos.

Necesitas mas ejemplos: Ecuación diferencial, ejercicio del Capítulo 2.3 Problema 17

Quiero aprender a simular mis ejercicios en un Software de Computadora, da click aquí

Encontraste la información que buscabas?

Puedes descargar éste artículo en formato PDF dando click aquí

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

Intervalo de Solución de una Ecuacion Diferencial como Problema del Valor Inicial.

Intervalo de solucion de una ecuacion diferencial

Intervalo de Solución de un Problema del Valor Inicial.

En este artículo aprenderás en 4 pasos a resolver una Ecuación Diferencial Lineal y encontrar su Intervalo de solución el cual fácilmente identificándolo gráficamente.

Ejercicios 2.3 Libro Dennis G. Zill (Problema 27).

Ecuacion Diferncial Lineal: Circuito LR en serie

Encontrar la solución para el problema del valor inicial (PVI), sujeta a:

a)      $ L\frac{di}{dt}+Ri=E$,             $ i(0)={{i}_{o}}$

Y, encontrar el intervalo I de solución.

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entre el coeficiente de $ \frac{di}{dt}$, que es “$ L$”, los coeficientes de los demás términos de la ecuación que dependen de “t”.

$ \frac{di}{dt}+P\left( t \right)i=f(t)$

$ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$

II.                  En el segundo paso encontramos el factor integrante: ,  

El valor de P(t) en $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}$, $ P(t)=\frac{R}{L}$.

$ {{e}^{\frac{R}{L}\mathop{\int }^{}dt}}={{e}^{\frac{R}{L}t}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$ \frac{di}{dt}+\frac{R}{L}i=0$. Sustituimos en $ {{i}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $ P(t)=\frac{R}{L}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{i}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{\text{i}}_{c}}=C{{e}^{-\frac{R}{L}\mathop{\int }^{}dt}}$

$ =C{{e}^{-\frac{R}{L}t}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ \text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }{{\text{i}}_{c}}={{i}_{0}}$ , de modo que:

Sustituyendo en:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$

Tenemos:

$ {{i}_{0}}=C\left( 1 \right)~\Rightarrow ~~C={{i}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{i}_{c}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ y la solución particular  $ {{i}_{c1}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Intervalo de solucion de una ecuacion diferencial

La función $ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ , tiene como dominio más largo el intervalo:

$ D_{x_{c}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Por tanto, la solución particular $ i_{c1}=i_{0}e^{-\frac{R}{L}t}$, tiene el mismo dominio:

$ D_{x_{c1}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

tambien.

Es decir, el dominio de las funciones abarca todos los números reales. Notar que la solución particular solo involucra a las curvas que intersectan a

$ i(t)$, dentro del rango que estemos analizando.

El valor de $ C={{i}_{0}}$ , para la solución particular del PVI $ L\frac{di}{dt}+Ri=0$,  $ i(0)={{i}_{o}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$. Para resolverla utilizamos la fórmula: $ {{i}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}=\frac{R}{L}$ (obtenido en el punto ii.) y $ f\left( t \right)=\frac{E}{L}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{i}_{p}}=\frac{1}{{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{E}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{R}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}[{{e}^{\frac{R}{L}t}}]$

$ =\frac{E}{R}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$ t=0;~~~~~~i={{i}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Entonces, sustituyendo los valores iniciales
$ i\left( 0 \right)={{i}_{0}}$

Tenemos:

$ {{i}_{0}}=C{{e}^{-\frac{R}{L}(0)}}+\frac{E}{R}$

$ \Rightarrow {{i}_{0}}=C(1)+\frac{E}{R}$

$ \Rightarrow C={{i}_{0}}-\frac{E}{R}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

y la solución particular:
$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Intervalo de solucion de una ecuacion diferencial

El dominio de la solución $ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$ está en el intervalo:

$ D_{i(t)}:- \infty < t < \infty$

O dicho de forma más común, el dominio de la solución del PVI:

($ L\frac{di}{dt}+Ri=E$,   $ i(0)={{i}_{o}}$ ), es el intervalo: $ (-\infty ,\infty )$. Notar que el valor de $ C={{i}_{0}}-\frac{E}{R}$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial: $ L\frac{di}{dt}+Ri=E$, $ i(0)={{i}_{o}}$, es,

$ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$

Con intervalo de solución:

$ \Large I:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Para aprender a realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 28ejercicio 29

Quiero ejemplos de circuitos electricos RLC en serie click aquí

Quiero ejemplos de circuitos electricos RC en serie click aquí

Quiero otro ejemplos de circuitos electricos RL en serie click aquí

Quiero mas ejemplos de aplicaciones

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto (da click aquí)

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill, Capítulo 2.3 (Problema 17)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (Problema 17)

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 (Problema 17): el siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método de solución de ED lineales

A continuación describimos el método para solución de cualquier ecuación diferencial lineal mediante 4 apsos sencillos. Una explicación más detallada de de éste método la puedes encontrar en el siguiente enlace: Método: Factor Integrante, click aquí

  1. Forma Standard: $\frac{dy}{dx}+P\left( x \right)y=f(x)$
  2. Factor Integrante: ${{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

  1. ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$
  2. ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ejercicios 2.3 Libro Dennis G. Zill (Problema 17)

$\cos x\frac{dy}{dx}+\left( \sin x \right)y=1$

Pasos:

I. El primer paso consiste en escribir la forma estándar de la ED a resolver:

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\sin x}{\cos x}y=\frac{1}{\cos x}$

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$\cos x$” , los coeficientes de los demás términos de la ecuación que dependen de “x”.

Por último agrupamos términos semejantes y simplificamos.

II. En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

${{e}^{{\int }^{}\frac{\sin x}{\cos x}dx}}={{e}^{{\int }^{}\tan xdx}}$

$={{e}^{-\ln (\cos x)}}$

$={{e}^{\ln {{(\cos x)}^{-1}}}}$

$={{(\cos x)}^{-1}}$

$=\frac{1}{\cos x}$

$=\sec x$

Para esto sustituimos el valor de P(x) en ${{e}^{{\int }^{}P\left( x \right)dx}}$,   donde: $P(x)=\frac{\sin x}{\cos x}=\tan x$. Para recordar las formulas integrales y el manejo de las funciones trascendentes vea el final del ejercicio.

III. Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\sin x}{\cos x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\sin x}{\cos x}=\tan x$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{y}_{c}}=C{{e}^{-{\int }^{}\tan xdx}}$

$=C{{e}^{\ln (\cos x)}}$

$=C\cos x$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$\large {{y}_{c}}=C\cos x$

Se puede ver una solución particular $y=-3\cos x\sec 1$ donde $C=-3\sec 1$

Notar que la función
${{y}_{c}}=C\cos x$ , tiene como dominio $-\frac{\pi }{2}<x<\frac{\pi }{2}$. Ya que cuando $x=\frac{\pi }{2}$, o un múltiplo entero de este, ${{y}_{c}}=0$ únicamente, es decir, ${{y}_{c}}$ no está definida para otro valor que no sea cero cuando “x” si lo es, por eso, para este caso el intervalo más largo de solución es $(-\frac{\pi }{2},\frac{\pi }{2})$.

. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\sin x}{\cos x}y=\frac{1}{\cos x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{{\int }^{}P\left( x \right)dx}}=\sec x$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{1}{\cos x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{\sec x}{\int }^{}\sec x(\frac{1}{\cos x})dx$

$=\frac{1}{\sec x}{\int }^{}{{(\sec x)}^{2}}dx$

$=\frac{1}{\sec x}(\tan x)$

$=\cos x(\frac{\sin x}{\cos x})$

$=\sin x$

Gráfica de la familia de soluciones del sistema no homogeneo:

$\large y=C~cosx+sinx$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 Problema 17

Se puede ver una solución particular $y\left( x \right)=-3\cos x\sec 1+\sin x-\cos x\tan 1$,

Donde: $C=-3\sec 1-\tan 1$. Nuevamente notar que la función $y=C~cosx+sinx$ , tiene como dominio el intervalo $~(-\frac{\pi }{2},\frac{\pi }{2})$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial

$\cos x\frac{dy}{dx}+\left( \sin x \right)y=1$, es:

$$\Large y=C\cos x+\sin x$$

Ecuación Diferencial Dennis G. Zill, Capítulo 2.3 Problema 17

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Identidades Trigonométricas

$\frac{1}{\cos x}=\sec x$,

Fórmulas de Integración

${\int }^{}\tan xdx=-\ln \cos x+C=\ln \sec x+C$

Necesitas mas ejemplos?

Ve el siguiente ejemplo para reconocer la diferencial entre el intervalo de solución de una solución particular y el intervalo de solución de la función, solución general.

Otro caso de Intervalo de solución particular, donde la función solución general, tiene un intervalo diferente del intervalo de solución de una solución particular.

Ve al ejemplo siguiente: Ecuación diferencial capitulo-2.3 (Ecuaciones Diferenciales Lineales) del libro de Dennis G. Zil. Problema18

________________________________________