ECUACIONES DIFERENCIALES SEPARABLES

Ecuaciones Diferenciales Separables

ECUACIONES DIFERENCIABLES SEPARABLES

Si lees el siguiente artículo hasta el final conocerás varios trucos para resolver ecuaciones diferenciales separables (sobre todo para integrar funciones, que aparecen de forma recurrente), mediante una metodología de 3 pasos de fácil aplicación.

El aprendizaje mediante la resolución de problemas es ampliamente utilizado en ciencias para desarrollar habilidades en los alumnos. Al utilizar ésta metodología se debe considerar que el cometer errores es fundamental para el aprendizaje pues se logran dos cosas:

1.- El crecimiento del cerebro en término de sus conexiones neuronales mediante la sinapsis

2.- Ser más inteligente.

Esto lo dice la Profesora Karol Dwek, profesora de psycología por la Universidad de Stanford, durante una entrevista para el curso online: How to learn math de la Universidad de Stanford, durante el tema Teaching for a Growth Minset.

De ésta forma, es importante ver que durante el proceso de aprendizaje individual, el cometer errores significa CRECER en INTELIGENCIA, más que verlo como por falta de capacidad del alumno o maestro, pues es en ese momento cuando, al lidear con el error, se generan más conexiones neuronales.

Metodología para resolver ecuaciones diferenciales separables

  1. La ecuación diferencial se escribe en la FORMA ESTÁNDAR propia de una ecuación diferencial ordinaria de primer orden:

$ \Large \frac{{dy}}{{dx}} = f (x, y)$

Ejemplo:

$ \frac{{dy}}{{dx}} = \frac{3 x^2 + 4 x + 2}{2 (y – 1)}$

Donde:

$ f (x, y) = \frac{3 x^2 + 4 x + 2}{2 (y – 1)}$

2. SEPARAMOS LAS VARIABLES de acuerdo al criterio visto en el artículo: Cómo resolver una ecuación diferencial de primer orden separable.

$ M {dx} = N {dy}$

Donde:

$ M = f (x)$  y $N = f (y)$

3. Por último, INTEGRAMOS ambos miembros de la ecuación mediante las fórmulas y ténicas conocidas del cálculo integral (Para referencia de cómo integrar funciones racionales dar click aquí)

Ecuaciones Diferenciales Separables Ejercicios Resueltos

Ejemplo 1, Problema del Valor Inicial (PVI)

Sigue leyendo

Cómo Resolver un Problema del Valor Inicial para Ecuaciones Diferenciales definidas por partes

Cómo resolver un Problema del Valor Inicia (PVI), de un SISTEMA LINEAL o Ecuación Diferencial (ED) definida en partes (a trozos).

Con este ejercicio, aprenderemos a resolver el problema del valor inicial ecuaciones diferenciales definidas por partes y, entenderemos qué significa gráficamente la función  o más propiamente dicho LA FUNCIÓN DE ENTRADA*.

Resolveremos, en los mismos 4 pasos que ya hemos utilizado con anterioridad, una ecuación diferencial lineal de 1er Orden DEFINIDA POR PARTES (a TROZOS), CON VALORES INICIALES.

El Ejercicio:

a)      $(1+{{x}^{2}})\frac{dy}{dx}+2xy=f(x)$,           $y\left( 0 \right)=0$,

$\LARGE f(x)=\left\{\begin{matrix}x,0\leq x<1\\ -x,x\geq 1\end{matrix}\right.$

Problema del valor inicial ecuaciones diferenciales

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 34)

Empezamos con $f\left( x \right)=x$:

$(1+{{x}^{2}})\frac{dy}{dx}+2xy=x$

Pasos:

I.                    Forma estándar de la ED a resolver:$\frac{dy}{dx}+P(x)y=f(x)$

Solo sustituimos en valor de la función de entrada $f(x)$.

$\frac{dy}{dx}+\frac{2xy}{1+{{x}^{2}}}=\frac{x}{1+{{x}^{2}}}$

II.                  Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=\frac{2x}{1+{{x}^{2}}}$.

${{e}^{\mathop{\int }^{}\frac{2x}{1+{{x}^{2}}}dx}}={{e}^{\ln \left| 1+{{x}^{2}} \right|}}$

$=1+{{\text{x}}^{2}}$

III.                Encontramos la familia de soluciones del sistema homogéneo asociado:

Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=\frac{2x}{1+{{x}^{2}}}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$\frac{dy}{dx}+\frac{2xy}{1+{{x}^{2}}}=0$

${{y}_{c1}}={{C}_{1}}{{e}^{-\mathop{\int }^{}\frac{2x}{1+{{x}^{2}}}dx}}$

$={{C}_{1}}{{e}^{-\ln \left| 1+{{x}^{2}} \right|}}$

$={{C}_{1}}{{e}^{\ln {{\left| 1+{{x}^{2}} \right|}^{-1}}}}$

$={{C}_{1}}{{(1+{{\text{x}}^{2}})}^{-1}}$

$=\frac{{{C}_{1}}}{1+{{x}^{2}}}$

*Los nombres SISTEMA LINEAL, FUNCIÓN DE ENTRADA y FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, acá utilizados son en realidad utilizados para SISTEMAS DINÁMICOS.

IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:

Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=1+{{\text{x}}^{2}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x}{1+{{x}^{2}}}$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$\frac{dy}{dx}+\frac{2xy}{1+{{x}^{2}}}=\frac{x}{1+{{x}^{2}}}$

${{y}_{p1}}=\frac{1}{1+{{\text{x}}^{2}}}\mathop{\int }^{}(1+{{\text{x}}^{2}})(\frac{x}{1+{{x}^{2}}})dx$

${{y}_{p1}}=\frac{1}{1+{{\text{x}}^{2}}}\mathop{\int }^{}xdx$

${{y}_{p1}}=\frac{1}{2(1+{{\text{x}}^{2}})}[{{x}^{2}}]$

${{y}_{p1}}=\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Por tanto, la solución general del sistema LINEAL no homogéneo: $\frac{dy}{dx}+\frac{2xy}{1+{{x}^{2}}}=\frac{x}{1+{{x}^{2}}}$, donde su función de entrada es igual a: $\mathbf{f}\left( \mathbf{x} \right)=\mathbf{x}$, es:

${{y}_{1}}\left( x \right)=\frac{{{C}_{1}}}{1+{{x}^{2}}}+\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Ahora encontraremos la solución general para la función de entrada $f\left( x \right)=-x$

Procedemos igual que en el caso anterior. Es decir, si tenemos:

$\left( 1+{{x}^{2}} \right)\frac{dy}{dx}+2xy=-x$

I. Forma estándar de la ED a resolver:

$\frac{dy}{dx}+\frac{2xy}{1+{{x}^{2}}}=\frac{-x}{1+{{x}^{2}}}$

II. Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Es el mismo que el anterior:

${{e}^{\mathop{\int }^{}\frac{2x}{1+{{x}^{2}}}dx}}={{e}^{\ln \left| 1+{{x}^{2}} \right|}}=1+{{\text{x}}^{2}}$

III. Encontramos la familia de soluciones del sistema homogéneo asociado:

${{y}_{c2}}={{y}_{c1}}={{C}_{2}}{{e}^{-\mathop{\int }^{}\frac{2x}{1+{{x}^{2}}}dx}}=\frac{{{C}_{2}}}{1+{{x}^{2}}}$

IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:

Acá es donde varían un poco los cálculos, como sigue:

${{y}_{p2}}=\frac{1}{1+{{\text{x}}^{2}}}\mathop{\int }^{}1+{{\text{x}}^{2}}(\frac{-x}{1+{{x}^{2}}})dx$

${{y}_{p2}}=\frac{1}{1+{{\text{x}}^{2}}}\mathop{\int }^{}-xdx$

${{y}_{p2}}=-\frac{1}{1+{{\text{x}}^{2}}}\mathop{\int }^{}xdx$

${{y}_{p1}}=-\frac{1}{2(1+{{\text{x}}^{2}})}[{{x}^{2}}]$

${{y}_{p2}}=-\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Donde su solución general es:

${{y}_{2}}\left( x \right)=\frac{{{C}_{2}}}{1+{{x}^{2}}}-\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Una vez obtenidas las dos soluciones generales, vamos a encontrar las soluciones particulares para resolver el problema de valores iniciales que nos piden.

Para este propósito, NECESITAMOS seleccionar primero la función de entrada que contiene los valores iniciales, es decir, seleccionamos:

$\frac{dy}{dx}+2xy=x$

Ya que cuando la función de entrada es: $f\left( x \right)=x$, los valores iniciales ($y\left( 0 \right)=0$) se encuentran dentro de su dominio, como lo podemos ver en:

$\LARGE f(x)=\left\{\begin{matrix}x,0\leq x<1\\ …\end{matrix}\right.$

De modo que encontraremos la solución particular o “RESPUESTA DEL SISTEMA”, para los valores iniciales: $y\left( 0 \right)=0$.

Solución del Problema de Valores Iniciales (PVI) de la ecuación diferencial lineal de 1er Orden dividida en partes.

Problema del valor inicial ecuaciones diferenciales

Primero evaluamos cuando $f\left( x \right)=x$

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “x” e “y”, que vienen como condiciones iniciales y despejando “C”.

Los valores iniciales, son:

$x=0;y=0$

Por tanto:

Si la solución general del Sistema Lineal no Homogéneo, cuando $f\left( x \right)=x$, es:

${{y}_{1}}\left( x \right)=\frac{{{C}_{1}}}{1+{{x}^{2}}}+\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Entonces, sustituyendo los valores iniciales $y\left( 0 \right)=0$

Tenemos:

$0=\frac{{{C}_{1}}}{1+{{(0)}^{2}}}+\frac{{{(0)}^{2}}}{2(1+{{(0)}^{2}})}$

$\Rightarrow 0=\frac{C}{1}$

$\Rightarrow C=0$

Sustituyendo este último resultado en la solución general, vemos que UNA solución particular del sistema Lineal no Homogéneo, es:

${{y}_{1}}\left( x \right)=\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

Ahora evaluamos cuando $f\left( x \right)=-x$

Ahora, para conocer la solución particular de la Función de Salida anterior, debemos tener precaución, ya que el sistema Lineal cuya función de entrada es: $f\left( x \right)=-x$, no está definida para cuando: $x=0$, según podemos ver en la definición de la función de entrada, definida por partes:

$\LARGE f(x)=\left\{\begin{matrix}…\\ -x,x\geq 1\end{matrix}\right.$

Por lo que para evaluar esta función, haremos uso de la DEFINICIÓN de CONTINUIDAD, como sigue:

Método para encontrar la solución particular en un Sistema Lineal (ED lineal) de 1er Orden definida en partes, donde el dominio de una de sus funciones de entrada no coincide con el valor dado, como condición inicial, a su variable independiente.

Problema del valor inicial ecuaciones diferenciales

Tal es el caso en esta ocasión pues podemos ver que cuando el sistema lineal tiene $\text{f}\left( \text{x} \right)=0$, el dominio de su variable independiente es: $\text{x}\ge 1$,

$\LARGE f(x)=\left\{\begin{matrix}x,0\leq x<1\\ -x,x\geq 1\end{matrix}\right.$

Por lo que no podemos considerar sustituir $x=0$, en la solución general obtenida:
${{y}_{2}}\left( x \right)=\frac{{{C}_{2}}}{1+{{x}^{2}}}-\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$, $x\ge 1$
Para esta situación, recurriremos al concepto de CONTINUIDAD.
TEOREMA. Continuidad: “El límite de una función cuando su variable independiente tiende a un número específico, existe, si el límite de la función, cuando tiende a ese número por la derecha es igual al límite cuando la función tiende a ese número por la izquierda”.
Es decir, para este caso:
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y(x)\to \exists \underset{x\to 1}{\mathop{\lim }}\,y(x)$,
Donde:
$\exists =$ Existe
Con este teorema encontraremos el valor de “C”, para hallar la Respuesta del Sistema cuando la función de entrada es:
$\text{f}\left( \text{x} \right)=-x$, suponiendo que el límite existe.
Entonces:
El límite por la izquierda:
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}=\frac{{{(1)}^{2}}}{2(1+{{(1)}^{2}})}=\frac{1}{4}$,
cuando:
$0\le x<1$
Y el límite por la derecha:
$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y(x)=\underset{x\to 1}{\mathop{\lim }}\,\frac{{{C}_{2}}}{1+{{x}^{2}}}-\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}=\frac{{{C}_{2}}}{1+{{(1)}^{2}}}-\frac{{{\left( 1 \right)}^{2}}}{2\left( 1+{{\left( 1 \right)}^{2}} \right)}=\frac{C}{2}-\frac{1}{4}$,
cuando:
$x\ge 1$

Con la suposición de que el límite existe, igualamos los resultados anteriores:

$\frac{1}{4}=\frac{{{C}_{2}}}{2}-\frac{1}{4}$,

Esto implica:

$\frac{{{C}_{2}}}{2}=\frac{1}{4}+\frac{1}{4}$,

${{C}_{2}}=2\left( \frac{2}{4} \right)=1$

Por tanto:

${{y}_{2}}\left( x \right)=\frac{1}{1+{{x}^{2}}}-\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}$

De donde, la solución del Sistema Lineal, dividida en partes, con valores iniciales, es:

$\LARGE y(x)=\left\{\begin{matrix}\frac{x^{2}}{2(1+x^{2})},0\leq x<1\\ \frac{1}{1+x^{2}}-\frac{x^{2}}{2(1+x^{2})},x\geq 1\end{matrix}\right.$

Simplificando más, podemos ver que el resultado anterior es lo mismo que:
$\LARGE y(x)=\left\{\begin{matrix}\frac{1}{2}-\frac{1}{2(1+x^{2})},0\leq x<1\\ -\frac{1}{2}-\frac{3}{2(1+x^{2})},x\geq 1\end{matrix}\right.$

Porque:

$\frac{{{x}^{2}}}{2(1+{{\text{x}}^{2}})}=\frac{-1+1+{{x}^{2}}}{2(1+{{\text{x}}^{2}})}=\frac{-1+(1+{{x}^{2}})}{2(1+{{\text{x}}^{2}})}=-\frac{1}{2\left( 1+{{\text{x}}^{2}} \right)}+\frac{1}{2}$,

para el primer caso y

$\frac{1}{1+{{x}^{2}}}-\frac{{{x}^{2}}}{2\left( 1+{{\text{x}}^{2}} \right)}=\frac{2-{{x}^{2}}}{2\left( 1+{{x}^{2}} \right)}=\frac{3-1-{{x}^{2}}}{2\left( 1+{{x}^{2}} \right)}=\frac{3-\left( 1+{{x}^{2}} \right)}{2\left( 1+{{x}^{2}} \right)}=\frac{3}{2\left( 1+{{x}^{2}} \right)}-\frac{1}{2}$,

para el 2º caso.

Este resultado es válido, aparentemente al haber empleado la definición de Continuidad, sin embargo, habrá que verificarlo y lo haremos posteriormente (siga el link), y veremos que no es válido el resultado por la definición de SOLUCIÓN DE LA ED EN UN INTERVALO, que dice que la solución de una ED diferencial y sus derivadas al sustituirlas en esta, la reducen a una identidad. En este caso no es así, puesto que para un mismo punto (punto $x=1$), tenemos dos funciones.Vemos las gráficas para, aclarar cómo se vería la gráfica definida en partes y cómo se observa la misma en el punto de discontinuidad.

problema del valor inicial ecuaciones diferenciales

La Gráfica en negro es la FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, para el problema de valores iniciales; la forma que adquiere esta gráfica se puede entender si sobreponemos sus componentes (las gráficas en azul y anaranjado)

problema del valor inicial ecuaciones diferenciales

En esta gráfica podemos ver que en el punto $x=1$, la gráfica aparece continua, sin embargo, la derivada de las funciones en ese punto, al sustituirlas en la ED original, no la reducen a la identidad, es decir:

Derivando el lado derecho de la función de salida y el lado izquierdo.

${{y}_{1}}\left( x \right)=\frac{1}{2}-\frac{1}{2(1+{{\text{x}}^{2}})}$    $\Rightarrow y_{1}^{‘}\left( x \right)=0+\frac{x}{{{(1+{{x}^{2}})}^{2}}}\Rightarrow \frac{x}{{{(1+{{x}^{2}})}^{2}}}$         y

${{y}_{2}}\left( x \right)=-\frac{1}{2}+\frac{3}{2(1+{{\text{x}}^{2}})}$   $\Rightarrow y_{2}^{‘}\left( x \right)=0-\frac{3x}{{{(1+{{x}^{2}})}^{2}}}\Rightarrow -\frac{3x}{{{(1+{{x}^{2}})}^{2}}}$

E igualando los resultados, tenemos:

$\frac{x}{{{(1+{{x}^{2}})}^{2}}}=-\frac{3x}{{{(1+{{x}^{2}})}^{2}}}$,

$x=-3x$

Por lo que al no obtener una identidad, la ecuación no es diferenciable en $x=1$.

Practica los ejercicios utilizando la técnica adecuada, para esto te invito a que revises la técnica que te describo en el siguiente link: La Técnica Perfecta para Aprender Ecuaciones Diferenciales y te dediques diariamente a resolver al menos un ejercicio aplicando la técnica que te describo, además de los problemas de tarea que tengas al comienzo de tu estudio de esta fascinante materia.

Ver mas ejemplos? probl 32probl 33

Quiero saber como expresar mi resultado usando la Función Error (Dale Click aquí)

Quiero aprender a simular mis Ecuaciones Diferenciales con un Software de Computadora (Dale Click)

Te ha servido el artículo? contáctame para cualquier sugerencia o duda en el siguiente link: contacto

Mientras tanto lee mi artículo: La técnica perfecta para aprender ecuaciones diferenciales. Seguramente te facilitará tus estudios y te hará mas fácil la vida. 😉