Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

Ecuacion Diferencial lineal homogenea y no homogenea

Con el método de los 4 pasos podrás resolver cualquier ED lineal de 1er orden.

Te recomiendo que uses el método varias veces para resolver cualquier ecuacion diferencial lineal homegenea y no homogenea, usándolo antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito.

Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias. Espero te sirva.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 23). Tomado de: Dennis G. Zill Ed 7ma.

$x\frac{dy}{dx}+\left( 3x+1 \right)y={{e}^{-3x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de $P\left( x \right)dx$en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$P(x)=\frac{(3x+1)}{x}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{3x+1}{x}dx}}={{e}^{3\mathop{\int }^{}dx+\mathop{\int }^{}\frac{1}{x}dx}}$

$={{e}^{3x+\ln x}}$

$=\text{x}{{e}^{3x}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\left( 3x+1 \right)}{x}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{3x+1}{x}dx}}$

$=C{{e}^{-3\mathop{\int }^{}dx-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-3x-\ln x}}$

$=C{{e}^{-3x+\ln {{x}^{-1}}}}$

$=C{{x}^{-1}}{{e}^{-3x}}$

$=\frac{C{{e}^{-3x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular ${{y}_{c1}}=-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}$ donde $C=-{{e}^{\frac{3}{2}}}$. Notar que la función ${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$ , tiene como dominio más largo el intervalo: $0<x<\infty $.</x<\

El intervalo más largo de definición de UNA solución es: $(0~,\infty )$, aunque el intervalo para la función es: $y:\{x\in \mathbb{R}-\left( 0 \right)\}$, o dicho de otra forma más sencilla, el valor de la función $y$, es: $\left( -\infty ,0 \right);(0,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}Q\left( x \right)dx}}=\text{x}{{e}^{3x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-3x}}}{x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}x{{e}^{3x}}(\frac{{{e}^{-3x}}}{x})dt$

$=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}dx$

$=\frac{1}{x{{e}^{3x}}}[x]$

$={{e}^{-3x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular $y\left( x \right)={{\text{e}}^{-3x}}-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}-\frac{{{\text{e}}^{-3x}}}{2x}$, Donde: $C=-\frac{1}{2}-{{e}^{\frac{3}{2}}}$. Nuevamente notar que la función $y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$ , tiene como dominio el intervalo (más largo): 0 Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, es:

$\Large y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Ecuacion diferencial lineal homegenea y no homogenea (Conceptos a recordar)

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

_____________________________________________________________________________________

2 pensamientos en “Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

  1. Hola, ¿qué tal?
    Creo que hay una forma mas efectiva para resolver este tipo de ecuaciones diferenciales, no sé como estoy seguro de como se llame el método pero creo que es «variación de constates» ¿crees poder subir un ejemplo con este método?

Deja un comentario