Continuidad de una Función Dividida en Partes

Función dividida en partes y su Continuidad 

En ocasiones encontraremos funciones de entrada divididas en partes para una Ecuación diferencial, en estos casos para encontrar una solución particular de la ED, si se conocen los valores iniciales, será necesario considerar que dicha solución será, de igual manera, una función dividida en partes y que para encontrar las soluciones particulares de cada una de sus partes será necesario el uso del concepto de continuidad.

Desarrollemos un ejemplo para cubrir este tema. Tenemos la EDO lineal de orden 1:

$$ \frac{dy}{dx}+2xy=f(x)$$$$ y\left( 0 \right)=2$$(1)

Con $f(x)$ dividida en partes:

$$f(x)=\left\{\begin{matrix}x,0\leq x< 1\\ 0,x\geq 1\end{matrix}\right.$$

Al buscar su función solución PARTICULAR nos toparemos con dos casos:

  • Una función solución para cuando la función de entrada es igual a: $f(x)=x$
  • Otra función solución para cuando la función de entrada es igual a: $f(x)=0$

Para el primer caso no tendremos problema de encontrar la solución particular utilizando los valores iniciales $y\left( 0 \right)=2$, ya que la restricción ($0\leq x< 1$) para ese caso nos permite utilizar dichos valores. Sin embargo, para el segundo caso no podemos considerar sustituir $x=0$, en la solución general obtenida para cuando $f(x)=0$:

$${{y}_{2}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}$$

Ya que:

$$x\ge 1$$

ver cálculo de la Solución General para éste Ecuación diferencial (1) en el siguiente link (click aquí), Por tanto, recurriremos al concepto de CONTINUIDAD.

TEOREMA

Continuidad: “El límite de una función cuando su variable independiente tiende a un número específico, existe, si el límite de la función, cuando tiende a ese número por la derecha es igual al límite cuando la función tiende a ese número por la izquierda”.

Es decir, para este caso:

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y(x)\to \exists \underset{x\to 1}{\mathop{\lim }}\,y(x)$.

Donde:  $\exists =$ Existe

Con este teorema encontraremos el valor de “C”, para hallar la Respuesta del Sistema cuando la función de entrada es: $\text{f}\left( \text{x} \right)=0$, suponiendo que el límite existe.

Entonces, el límite por la izquierda:

Sigue leyendo

Problema del Valor Inicial. Ecuación Diferencial Dividida en partes

Problema del Valor Inicial. Ecuación Diferencial Dividida en partes (trozos), lineal de primer orden.

Al terminar de leer este ejercicio del Problema del Valor Inicial, ecuación diferencial dividida en partes, lineal y de primer orden,  entenderás:

  • El concepto de Ecuación Diferencial por partes,
  • Qué significa gráficamente la función o más propiamente dicho LA FUNCIÓN DE ENTRADA* y
  • Cómo resolver un Problema con Valores Iniciales (PVI), de un SISTEMA LINEAL o Ecuación Diferencial (ED), de estas características.
La metodología que utilizaremos es:
  1. Encontrar las soluciones generales para las dos funciones que componen la función de entrada.
  2. Evaluar individualmente las soluciones generales con los valores iniciales utilizando el concepto de continuidad de funciones dividida en partes, para encontrar sus soluciones particulares.

Utilizaremos los mismos 4 pasos que ya hemos para resolver ecuaciones diferenciales lineales de 1er Orden, en este caso DEFINIDA POR PARTES (a TROZOS), CON VALORES INICIALES y mostraremos las gráficas de la función solución dividida en parte.

Al final dejo el artículo descargable donde incluyo el desgloce paso a paso del código de MATHEMATICA y SAGE para simular este tipo de EDO Lineal.

Ejercicio resuelto:
a)      $\frac{dy}{dx}+2xy=f(x)$, $y\left( 0 \right)=2$,
$\LARGE f(x)=\left\{\begin{matrix}x,0\leq x< 1\\ 0,x\geq 1\end{matrix}\right.$
Utilizaremos el método del Factor Integrante (ver enlace).

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 33). Problema del Valor Inicial. Ecuación Diferencial Dividida en partes

A. Empezamos con encontrar la solución general de la ED cuando  $f\left( x \right)=x$:

Pasos: I.  Forma estándar de la ED a resolver: $\frac{dy}{dx}+P(x)y=f(x)$, Solo sustituimos el valor de la función de entrada $f(x)=x$, de modo que:

$\Large \frac{dy}{dx}+2xy=x$

II. Encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$
$\Large {{e}^{2\mathop{\int }^{}xdx}}={{e}^{{{x}^{2}}}}$
El valor de P(x) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$ , es: $P\left( x \right)=2x$
III. Encontramos la familia de soluciones del sistema homogéneo asociado:
$\Large \frac{dy}{dx}+2xy=0$
Sustituimos en ${{y}_{c}}=C{{e}^{\mathop{\int }^{}P(x)dx}}$, donde: $P\left( x \right)=2×1$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el enlace: método de 4 pasos.
$\Large {{y}_{c1}}=C{{e}^{-2\mathop{\int }^{}xdx}}$
$\Large =C{{e}^{-{{x}^{2}}}}$
$\Large =\frac{C}{{{e}^{{{x}^{2}}}}}$
IV. Encontramos una solución particular a partir del sistema LINEAL no homogéneo:
Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}={{e}^{{{x}^{2}}}}$ (obtenido en el punto ii.) y $f\left( x \right)=2x$.  obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: método de 4 pasos.
$\Large \frac{dy}{dx}+2xy=x$

$\Large {{y}_{p1}}=\frac{1}{{{e}^{{{x}^{2}}}}}\mathop{\int }^{}{{e}^{{{x}^{2}}}}(x)dx$

$\Large {{y}_{p1}}=\frac{1}{2{{e}^{{{x}^{2}}}}}{{e}^{{{x}^{2}}}}$

$ \Large {{y}_{p1}}=\frac{1}{2}$

Para ver el cómo se evalúa la integral $\mathop{\int }^{}{{e}^{{{x}^{2}}}}(x)dx$, ver el desarrollo al final del artículo.
Por tanto, la solución general del sistema LINEAL no homogéneo: $\frac{dy}{dx}+2xy=x$donde su función de entrada es igual a: $ \mathbf{f}\left( \mathbf{x} \right)=\mathbf{x}$, es:
$\Large {{y}_{1}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}+\frac{1}{2}$

B. Ahora encontraremos la solución general para la función de entrada $f(x)=0$.

En este caso podemos notar que nuestra ecuación se convierte en el sistema homogéneo asociado de nuestro caso previo, por lo que ya conocemos la solución, es decir:

Tenemos. $\Large \frac{dy}{dx}+2xy=0$ Donde su solución general es: $\Large {{y}_{2}}\left( x \right)={{y}_{c1}}=\frac{C}{{{e}^{{{x}^{2}}}}}$ Y su factor integrante es igual al anterior:  ${{e}^{2\mathop{\int }^{}xdx}}={{e}^{{{x}^{2}}}}$

Solución del Problema del Valor Inicial. Ecuación Diferencial Dividida en partes, lineal y de 1er Orden.

Ahora, evaluamos cada solución general individualmente. Primero evaluamos cuando: $\large f\left( x \right)=x$, es decir: $\large \frac{dy}{dx}+2xy=x$ con valores iniciales: $\large x=0;y=2$ Vimos que la solución general del Sistema Lineal no Homogéneo, cuando $f\left( x \right)=x$, es:

$\Large y_{1}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}+\frac{1}{2}$

Para este caso, como la restricción para la función de entrada: $f(x)=x$ es: $0\leq x< 1$, podemos sustituir los valores iniciales $x=0,y=2$ en la solución general obtenida puesto que no violan la restricción, de modo que:

$\large y\left( 0 \right)=2$

Implica, en la solución general $\large {{y}_{1}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}+\frac{1}{2}$ que:

$\Large 2=\frac{C}{{{e}^{{{(0)}^{2}}}}}+\frac{1}{2}$

$\Large \Rightarrow 2=\frac{C}{1}+\frac{1}{2}$

$\Large \Rightarrow 2-\frac{1}{2}=C$

$\Large \Rightarrow C=\frac{3}{2}$

Sustituyendo este último resultado en la solución general, vemos que UNA solución particular del sistema Lineal no Homogéneo, es:

${{y}_{1}}\left( x \right)=\frac{3}{2{{e}^{{{x}^{2}}}}}+\frac{1}{2}$

Ahora evaluamos cuando $f\left( x \right)=0$ Para conocer la solución particular de la EDO lineal con la Función de Entrada anterior, debemos tener precaución, ya que el sistema Lineal, no está definida para cuando: $x=0$, según podemos ver en la definición de la función de entrada, definida por partes:

$\LARGE f(x)=\left\{\begin{matrix}…\\ 0,x\geq 1\end{matrix}\right.$

Por lo que para evaluar la función de Salida obtenida, es decir la solución general obtenida para cuando $f(x)=0$, haremos uso de la DEFINICIÓN de CONTINUIDAD, ver el desarrollo paso a paso de la definición en el siguiente enlace (click aquí).

CONTINUIDAD DE UNA FUNCIÓN: De manera informal podemos decir que una función es continua si el límite de ésta función existe, cuando su variable independiente tiende a un número específico. Para saber si existe dicho límite, debemos probar que, el límite de la función cuando tiende a ese número por la derecha es igual al límite cuando la función tiende a ese número por la izquierda.

De acuerdo a esta definición, podemos asumir que el límite de la función solución obtenida, si existe (la solución general de laEDO lineal cuando ($f(x)=0$), es decir  $f(x)={{y}_{2}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}$ si existe,  y es igual a:
  • A la izquierda la función solución general obtenida para cuando $f(x)=x$, es decir:

$\Large {{y}_{1}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}+\frac{1}{2}$

  • A la derecha la función general obtenida para cuando $f(x)=0$, es decir:

$\Large {{y}_{2}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}$

De modo que con la suposición de que el límite existe, igualamos los resultados anteriores:

$\Large \frac{3}{2\text{e}}+\frac{1}{2}=\frac{C}{\text{e}}$

Esto implica:

$\Large C=\frac{3}{2}+\frac{e}{2}$

Por tanto:

$\Large {{y}_{2}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}=\frac{\frac{3}{2}+\frac{e}{2}}{{{e}^{{{x}^{2}}}}}=\frac{3{{e}^{-{{x}^{2}}}}}{2}+\frac{{{e}^{1-{{x}^{2}}}}}{2}$

De donde, la solución del Problema del Valor Inicial. Ecuación Diferencial Dividida en partes, es:

$\LARGE f(x)=\left\{\begin{matrix}\frac{3}{2e^{x^{2}}}+\frac{1}{2},0\leq x< 1\\ \frac{3e^{-x^{2}}}{2}+\frac{e^{1-x^{2}}}{2},x\geq 1\end{matrix}\right.$

Este resultado no es válido, en realidad, por la definición de SOLUCIÓN DE LA ED EN UN INTERVALO, que dice que la solución de una ED diferencial y sus derivadas al sustituirlas en esta, la reducen a una identidad. Ver el siguiente enlace, click aquí

Vemos las gráficas para, aclarar cómo se vería la gráfica definida en partes y cómo se observa la misma en el punto de discontinuidad.
Problema del Valor Inicial. Ecuación Diferencial Dividida en partes

La Gráfica en negro es la FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, para el problema de valores iniciales; la forma que adquiere esta gráfica se puede entender si sobreponemos sus componentes (las gráficas en azul y anaranjado)

Problema del Valor Inicial. Ecuacion Diferencial dividida en partes

En esta gráfica podemos ver que en el punto , la gráfica aparece continua, sin embargo, la derivada de las funciones en ese punto, al sustituirlas en la ED original, no la reducen a la identidad. Ver el enlace, da click aquí.

Evaluando la integral del paso IV:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _

$u={{e}^{{{x}^{2}}}}$

$du=2xdx$

$\Rightarrow \frac{1}{2}\mathop{\int }^{}{{e}^{{{x}^{2}}}}\left( 2x \right)dx\Rightarrow \frac{1}{2}{{e}^{{{x}^{2}}}}$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _

*Los nombres SISTEMA LINEAL, FUNCIÓN DE ENTRADA y FUNCIÓN DE SALIDA o RESPUESTA DEL SISTEMA, acá utilizados son en realidad utilizados para SISTEMAS DINÁMICOS. Descarga gratuitamente éste mismo ejercicio resuelto en este link: Ecuación Diferencial Lineal definida en partes.

Ecuaciones Diferenciales

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y aduéñate de todos los proyectos!

Sé un EXPERTO, aprende a ver el mundo como un verdadero profesional de la ingeniería, las matemáticas, la física.

Dale click al siguiente enlace e INSCRÍBETA YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí para más información

Para que obtengas la confianxza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y práctica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:
  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro Programa Completo de Ecuacoines Diferenciales

Aplicaciones de las Ecuaciones Diferenciales


Da un paso adelante y descarga este mismo ejercicio y además con un desarrollo paso a paso del código de MATHEMATICA y SAGE para resolverlo, para DESCARGARLO da click aquí. Puedes introducir el código de SAGE aquí (da click aquí), para simularlo. O MEJOR AÚN Descarga el ejercicio resuelto: Que incluye:
  1. Una explicación mas detallada del ejercicio,
  2. Una EXPLICACIÓN DETALLADA del CÓDIGO EN MATHEMATICA y SAGE para resolverlo.
  3. El archivo .nb para correr en MATHEMATICA y
  4. El código en formato plain- text para pegarlo en SAGE.
  5. La simulación gráfica en MATHEMATICA y SAGE
  6. Da Click en el boton de «agrégalo a tu carrito». =)

Practica los ejercicios utilizando la técnica adecuada, para esto te invito a que revises la técnica que te describo en el siguiente link: La Técnica Perfecta para Aprender Ecuaciones Diferenciales y te dediques diariamente a resolver al menos un ejercicio aplicando la técnica que te describo, además de los problemas de tarea que tengas al comienzo de tu estudio de esta fascinante materia.

Ver mas ejemplos?  probl 32, problema 34probl 35 Quiero saber como expresar mi resultado usando la Función Error (Dale Click aquí) Quiero aprender a simular mis Ecuaciones Diferenciales con un Software de Computadora (Dale Click) Te ha servido el artículo? contáctame para cualquier sugerencia o duda en el siguiente link: contacto Mientras te dejo con mi artículo: La técnica perfecta para aprender ecuaciones diferenciales. Seguramente te facilitará tus estudios y te hará mas fácil la vida. 😉

Intervalo de solución para un Problema del Valor Inicial (PVI) de una ED lineal

Encontrar el intervalo de solución para un Problema del Valor Inicial la solución, siendo dicho intervalo de solución «, el intervalo más largo , para el Problema del Valor Inicial:

a)      $\frac{dT}{dt}=k(T-Tm)$,             $T(0)={{T}_{0}}$

Utilizaremos el método del Factor Integrante (ver enlace), mediante los 4 pasos que hemos utilizamos aquí para resolver cualquier ED lineal de 1er orden (link: Método de los 4 pasos)

Ejercicios 2.3 Libro Dennis G. Zill, Ed 7ma. (Problema 28).

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Multiplicamos el lado derecho de la ecuación y agrupamos, para obtener la forma estándar. Note que  , es una constante.

$\frac{dT}{dt}+P\left( t \right)T=f(t)$

$\frac{dT}{dt}-kT=-k{{T}_{m}}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( t \right)\mathbf{dt}}}$,  

El valor de $P(x)$ en ${{e}^{\mathop{\int }^{}P\left( t \right)dt}}$ , es: $P\left( t \right)=-k$.

${{e}^{-k\mathop{\int }^{}dt}}={{e}^{-kt}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es :$\frac{dT}{dt}-kT=0$. Sustituimos en ${{T}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $P\left( t \right)=-k$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{T}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{T}_{c}}=C{{e}^{(-)-k\mathop{\int }^{}dt}}$

$=C{{e}^{kt}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $\text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }T={{T}_{0}}$ , de modo que:

Sustituyendo en:

${{T}_{c}}=C{{e}^{kt}}$

Tenemos:

${{T}_{0}}=C{{e}^{k(0)}}~\Rightarrow ~~{{T}_{0}}=C\left( 1 \right)~~\Rightarrow ~~C={{T}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

${{T}_{c1}}={{T}_{0}}{{e}^{kt}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{T}_{c}}=C{{e}^{kt}}$ y la solución particular  ${{T}_{c1}}={{T}_{0}}{{e}^{kt}}$

Intervalo de solución para un Problema del Valor Inicial

La función ${{T}_{c}}=C{{e}^{kt}}$ , tiene como dominio el intervalo:

$D_{T_{C}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Por tanto, la solución particular $T_{c1}=T_{0}e^{kt}$, tiene el mismo dominio:

$D_{T_{C1}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Notar que la solución particular solo involucra a las curvas que intersectan a $T(t)$, dentro del rango que estemos analizando. El valor de $C={{T}_{0}}$ , para la solución particular del PVI $\frac{dT}{dt}=kT$,  $T(0)={{T}_{0}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dT}{dt}-kT=-k{{T}_{m}}$. Para resolverla utilizamos la fórmula: ${{T}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: ${{e}^{\mathop{\int }^{}P\left( t \right)dt}}={{e}^{-kt}}$ (obtenido en el punto ii.) y $f\left( t \right)=-k{{T}_{m}}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{T}_{p}}=\frac{1}{{{e}^{-kt}}}\mathop{\int }^{}{{e}^{-kt}}(-k{{T}_{m}})dt$

$=\frac{{{T}_{m}}}{{{e}^{-kt}}}\mathop{\int }^{}{{e}^{-kt}}(-k)dt$

$=\frac{{{T}_{m}}}{{{e}^{-kt}}}[{{e}^{-kt}}]$

$={{T}_{m}}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$t=0;~~~~~~T={{T}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$T\left( t \right)=C{{e}^{kt}}+{{T}_{m}}$

Entonces, sustituyendo los valores iniciales
$T\left( 0 \right)={{T}_{0}}$

Tenemos:

${{T}_{0}}=C{{e}^{k(0)}}+{{T}_{m}}$

$\Rightarrow {{T}_{0}}=C(1)+{{T}_{m}}$

$\Rightarrow C={{T}_{0}}-{{T}_{m}}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$T\left( t \right)=C{{e}^{kt}}+{{T}_{m}}$

y la solución particular del PVI:
$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

El dominio de la solución $T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$ está en el intervalo:

${{D}_{i(t)}}:-\infty <t< \infty$

O dicho de forma más común, el dominio de la solución del PVI ($\frac{dT}{dt}=k(T-Tm)$,   $T(0)={{T}_{o}}$ ), es el intervalo: $(-\infty ,\infty )$. Notar que el valor de $C={{T}_{0}}-Tm$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial:

$\frac{dT}{dt}=k(T-Tm)$, $T(0)={{T}_{0}}$, es,

$T\left( t \right)=({{T}_{0}}-{{T}_{m}}){{e}^{kt}}+{{T}_{m}}$

Con intervalo de solución:

$D_{T_{C}}:\left \{ t\epsilon R\mid -\infty < t< \infty  \right \}$

Intervalo de solución para un Problema del Valor Inicial: Analizando dos casos espacíficos

Para analizar el comportamiento de dos casos particulares de variación de T(t), con respecto del tiempo, mostramos las siguientes tablas y gráficas.

Intervalo de solución para un Problema del Valor Inicial

Sistema representado por:  $T\left( t \right)=25{{\text{e}}^{-2t}}$

En esta gráfica podemos ver que mientras $t\to \infty $, $T\left( t \right)\to 0$. Se trata de un proceso de descongelamiento y la temperatura se tiende a estabilizar, en este caso a CERO, por tratarse de un sistema Homogéneo; hablando de sistemas físicos representados mediante Ecuaciones Diferenciales,  cuando la función $f\left( x \right)=0$, se refiere, en general a que no existen factores externos al sistema que lo modifiquen.  Veamos el siguiente ejemplo:

Intervalo de solución para un Problema del Valor Inicial

Sistema representado por: $T\left( t \right)={{\text{e}}^{-2t}}(-3+28{{\text{e}}^{2t}})$

En este ejemplo el sistema recibe los efectos del medio ambiente al involucrarse la variable $Tm=28$. Notar que $f\left( x \right)=-kTm$, en la ecuación original: $\frac{dT}{dt}=k(T-Tm)$. En este caso, el sistema incrementa su temperatura cuando “t” aumenta. La temperatura de estabilidad es $Tm=28$. Esto se puede ver más claro en la gráfica de “Campo de direcciones”

Intervalo de solución para un Problema del Valor Inicial

 

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Intervalo de solución para un Problema del Valor Inicial: Cómo realiza simulaciones con software matemático de código abierto

Las simulaciones por computadora de los sismetas dinámicos modelados matemáticamente (con ecuaciones diferenciales), son imprescindibles, no solo para comprender mejor los conceptos aprendidos, si no para poder pronosticar comportamientos y tomar decisiones; todo ingeniero o científico necesita de los conociemientos para realizarlas.

En mi curso Ecuaciones Diferenciales con SAGE, te llevo paso a paso para que aprendas a simular cada tipo de ecuación diferencial así como poder reunir ese conocimiento mediante un proyecto final en donde desarrolamos la simulación de un sistema físico real. 😉

Para tener un conocimieto básico de cómo realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

Intervalo de solución para un Problema del Valor Inicial: Cómo aprender ED’s

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 27, ejercicio 29

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto(da click aquí)

Intervalo de Solución de una Ecuacion Diferencial como Problema del Valor Inicial.

Intervalo de solucion de una ecuacion diferencial

Intervalo de Solución de un Problema del Valor Inicial.

En este artículo aprenderás en 4 pasos a resolver una Ecuación Diferencial Lineal y encontrar su Intervalo de solución el cual fácilmente identificándolo gráficamente.

Ejercicios 2.3 Libro Dennis G. Zill (Problema 27).

Ecuacion Diferncial Lineal: Circuito LR en serie

Encontrar la solución para el problema del valor inicial (PVI), sujeta a:

a)      $ L\frac{di}{dt}+Ri=E$,             $ i(0)={{i}_{o}}$

Y, encontrar el intervalo I de solución.

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entre el coeficiente de $ \frac{di}{dt}$, que es “$ L$”, los coeficientes de los demás términos de la ecuación que dependen de “t”.

$ \frac{di}{dt}+P\left( t \right)i=f(t)$

$ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$

II.                  En el segundo paso encontramos el factor integrante: ,  

El valor de P(t) en $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}$, $ P(t)=\frac{R}{L}$.

$ {{e}^{\frac{R}{L}\mathop{\int }^{}dt}}={{e}^{\frac{R}{L}t}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$ \frac{di}{dt}+\frac{R}{L}i=0$. Sustituimos en $ {{i}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $ P(t)=\frac{R}{L}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{i}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{\text{i}}_{c}}=C{{e}^{-\frac{R}{L}\mathop{\int }^{}dt}}$

$ =C{{e}^{-\frac{R}{L}t}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ \text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }{{\text{i}}_{c}}={{i}_{0}}$ , de modo que:

Sustituyendo en:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$

Tenemos:

$ {{i}_{0}}=C\left( 1 \right)~\Rightarrow ~~C={{i}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{i}_{c}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ y la solución particular  $ {{i}_{c1}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Intervalo de solucion de una ecuacion diferencial

La función $ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ , tiene como dominio más largo el intervalo:

$ D_{x_{c}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Por tanto, la solución particular $ i_{c1}=i_{0}e^{-\frac{R}{L}t}$, tiene el mismo dominio:

$ D_{x_{c1}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

tambien.

Es decir, el dominio de las funciones abarca todos los números reales. Notar que la solución particular solo involucra a las curvas que intersectan a

$ i(t)$, dentro del rango que estemos analizando.

El valor de $ C={{i}_{0}}$ , para la solución particular del PVI $ L\frac{di}{dt}+Ri=0$,  $ i(0)={{i}_{o}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$. Para resolverla utilizamos la fórmula: $ {{i}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}=\frac{R}{L}$ (obtenido en el punto ii.) y $ f\left( t \right)=\frac{E}{L}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{i}_{p}}=\frac{1}{{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{E}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{R}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}[{{e}^{\frac{R}{L}t}}]$

$ =\frac{E}{R}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$ t=0;~~~~~~i={{i}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Entonces, sustituyendo los valores iniciales
$ i\left( 0 \right)={{i}_{0}}$

Tenemos:

$ {{i}_{0}}=C{{e}^{-\frac{R}{L}(0)}}+\frac{E}{R}$

$ \Rightarrow {{i}_{0}}=C(1)+\frac{E}{R}$

$ \Rightarrow C={{i}_{0}}-\frac{E}{R}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

y la solución particular:
$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Intervalo de solucion de una ecuacion diferencial

El dominio de la solución $ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$ está en el intervalo:

$ D_{i(t)}:- \infty < t < \infty$

O dicho de forma más común, el dominio de la solución del PVI:

($ L\frac{di}{dt}+Ri=E$,   $ i(0)={{i}_{o}}$ ), es el intervalo: $ (-\infty ,\infty )$. Notar que el valor de $ C={{i}_{0}}-\frac{E}{R}$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial: $ L\frac{di}{dt}+Ri=E$, $ i(0)={{i}_{o}}$, es,

$ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$

Con intervalo de solución:

$ \Large I:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Para aprender a realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 28ejercicio 29

Quiero ejemplos de circuitos electricos RLC en serie click aquí

Quiero ejemplos de circuitos electricos RC en serie click aquí

Quiero otro ejemplos de circuitos electricos RL en serie click aquí

Quiero mas ejemplos de aplicaciones

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto (da click aquí)

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

El siguiente problema de Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19, se desarrolla el método que proponemos para resolver cualquier ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tatar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Método: Factor Integrante

1. Forma Standard:  $ \frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: $ {{e}^{{\int }^{}P\left( x \right)dx}}$

Forma de solución: $ y={{y}_{c}}+{{y}_{p}}$

3.                                   $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$

4.                                   $x {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

$ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $ \frac{dy}{dx}$, que es “$ x+1$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$ \frac{dy}{dx}+P\left( x \right)y=f(x)$

$ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$

II.                    En el segundo paso encontramos el factor integrante:

 $ {{\mathbf{e}}^{{\int }^{}\mathbf{P}\left( \mathbf{x} \right)\mathbf{dx}}}$,

Para esto sustituimos el valor de $P(x)$ en $ {{e}^{{\int }^{}P\left( x \right)dx}}$,   donde:$ P(x)=\frac{x+2}{x+1}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y la división entre polinomios, vea el final del ejercicio.

$ {{e}^{{\int }^{}\frac{x+2}{x+1}dx}}={{e}^{{\int }^{}\text{dx}+{\int }^{}\frac{1}{x+1}dx}}$

$ ={{e}^{x+\ln (x+1)}}$

$ ={{e}^{x}}{{e}^{\ln (x+1)}}$

$ =\left( \text{x}+1 \right){{e}^{x}}$

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$ \frac{dy}{dx}+\frac{x+2}{x+1}y=0$ . Para resolverla sustituimos en la fórmula: $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, los valores de $ P(x)=\frac{x+2}{x+1}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{y}_{c}}=C{{e}^{-{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{y}_{c}}=C{{e}^{-{\int }^{}\frac{x+2}{x+1}dx}}$

$ =C{{e}^{{\int }^{}\text{dx}-{\int }^{}\frac{1}{x+1}dx}}$

$ =C{{e}^{-\text{x}-\ln (x+1)}}$

$ =C{{e}^{-\text{x}+\ln {{(x+1)}^{-1}}}}$

$ =C{{e}^{-\text{x}}}{{e}^{\ln {{(x+1)}^{-1}}}}$

$ =C{{(x+1)}^{-1}}{{e}^{-\text{x}}}$

$ =C\frac{{{e}^{-\text{x}}}}{(x+1)}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $ y=-\frac{6{{e}^{1-x}}}{1+x}$ donde $ C=-6e$. Notar que la función
$ {{y}_{c}}=\frac{C{{e}^{-\text{x}}}}{(x+1)}$ , tiene como dominio el intervalo: $ -1\le x\le \infty $ (analizar el denominador de la función $ \frac{C{{e}^{-\text{x}}}}{(x+1)}$, pues aunque se nota una gráfica que aparece antes de -1 (gráfica en verde), esta también está indefinida en -1, por eso el intervalo más largo de definición de UNA solución es: $ (-1~,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $ \frac{dy}{dx}+\frac{x+2}{x+1}y=\frac{2x{{e}^{-x}}}{x+1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: $ {{y}_{p}}=\frac{1}{{{e}^{{\int }^{}P\left( x \right)dx}}}{\int }^{}{{e}^{{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: $ {{e}^{{\int }^{}P\left( x \right)dx}}=\left( \text{x}+1 \right){{e}^{x}}$ (obtenido en el punto ii.) y $ f\left( x \right)=\frac{2x{{e}^{-x}}}{x+1}$ obtenido en el punto iPara ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{y}_{p}}=\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}\left( \text{x}+1 \right){{e}^{x}}\frac{2x{{e}^{-x}}}{x+1}dx$

$ =\frac{1}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}2xdx$

$ =\frac{2}{\left( \text{x}+1 \right){{e}^{x}}}{\int }^{}xdx$

$ =\frac{2}{2\left( \text{x}+1 \right){{e}^{x}}}{{x}^{2}}$

$ =\frac{{{x}^{2}}{{e}^{-x}}}{\left( \text{x}+1 \right)}$

Gráfica de la familia de soluciones del sistema no homogeneo:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Se puede ver una solución particular $y\left( x \right)=-\frac{6{{\text{e}}^{1-x}}}{1+x}-\frac{{{\text{e}}^{-x}}}{1+x}+\frac{{{\text{e}}^{-x}}{{x}^{2}}}{1+x}$, Donde: $ C=-1-6e$. Nuevamente notar que la función $ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$ , tiene como dominio el intervalo: $ (-1~,\infty )$. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $ (\text{x}+1)\frac{dy}{dx}+\left( x+2 \right)y=2x{{e}^{-x}}$, es:

$ y=C\frac{{{e}^{-x}}}{(x+1)}+\frac{{{x}^{2}}{{e}^{-x}}}{\left( x+1 \right)}$

 

Ecuación Diferencial Ejercicios Resueltos Dennis G. Zill cap 2.3. Prob 19

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

División entre Polinomios

$ \frac{x+2}{x+1}=1+\frac{1}{x+1}$

Ya que:

$ x+1\overset{1}{\overline{\left){\frac{x+2}{\frac{-x-1}{1}}}\right.}}$

Lo que intenté escribirles es el algoritmo de la división, el “1”en la parte superior (sobre la “x”), es el entero resultante de dividir $ \frac{x}{x}=1$, este es el “1” que usamos como parte del resultado, la línea debajo de $ x+2$, es el resultado de multiplicar el “1” de la parte superior por $ x+1$ e ir acomodando los términos debajo de sus correspondiente del dividendo, que en este caso es el mencionado término: $ x+2$, al final, al cambiarle los signos a este resultado y sumarlos al mismo dividendo vemos que: $ x+2-x-1=1$, este “1” es el que aparece hasta abajo, es el residuo, el cual es, junto con el divisor, la fracción: $ \frac{1}{x+1}$, sumada al final.

Ecuaciones Diferenciales

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace para e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

  • Realiza Modelado Matemático
  • Aplica los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realiza simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales