Continuidad de una Función Dividida en Partes

Función dividida en partes y su Continuidad 

En ocasiones encontraremos funciones de entrada divididas en partes para una Ecuación diferencial, en estos casos para encontrar una solución particular de la ED, si se conocen los valores iniciales, será necesario considerar que dicha solución será, de igual manera, una función dividida en partes y que para encontrar las soluciones particulares de cada una de sus partes será necesario el uso del concepto de continuidad.

Desarrollemos un ejemplo para cubrir este tema. Tenemos la EDO lineal de orden 1:

$$ \frac{dy}{dx}+2xy=f(x)$$$$ y\left( 0 \right)=2$$(1)

Con $f(x)$ dividida en partes:

$$f(x)=\left\{\begin{matrix}x,0\leq x< 1\\ 0,x\geq 1\end{matrix}\right.$$

Al buscar su función solución PARTICULAR nos toparemos con dos casos:

  • Una función solución para cuando la función de entrada es igual a: $f(x)=x$
  • Otra función solución para cuando la función de entrada es igual a: $f(x)=0$

Para el primer caso no tendremos problema de encontrar la solución particular utilizando los valores iniciales $y\left( 0 \right)=2$, ya que la restricción ($0\leq x< 1$) para ese caso nos permite utilizar dichos valores. Sin embargo, para el segundo caso no podemos considerar sustituir $x=0$, en la solución general obtenida para cuando $f(x)=0$:

$${{y}_{2}}\left( x \right)=\frac{C}{{{e}^{{{x}^{2}}}}}$$

Ya que:

$$x\ge 1$$

ver cálculo de la Solución General para éste Ecuación diferencial (1) en el siguiente link (click aquí), Por tanto, recurriremos al concepto de CONTINUIDAD.

TEOREMA

Continuidad: “El límite de una función cuando su variable independiente tiende a un número específico, existe, si el límite de la función, cuando tiende a ese número por la derecha es igual al límite cuando la función tiende a ese número por la izquierda”.

Es decir, para este caso:

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y(x)\to \exists \underset{x\to 1}{\mathop{\lim }}\,y(x)$.

Donde:  $\exists =$ Existe

Con este teorema encontraremos el valor de “C”, para hallar la Respuesta del Sistema cuando la función de entrada es: $\text{f}\left( \text{x} \right)=0$, suponiendo que el límite existe.

Entonces, el límite por la izquierda:

Sigue leyendo

Intervalo de Solución de una Ecuacion Diferencial como Problema del Valor Inicial.

Intervalo de solucion de una ecuacion diferencial

Intervalo de Solución de un Problema del Valor Inicial.

En este artículo aprenderás en 4 pasos a resolver una Ecuación Diferencial Lineal y encontrar su Intervalo de solución el cual fácilmente identificándolo gráficamente.

Ejercicios 2.3 Libro Dennis G. Zill (Problema 27).

Ecuacion Diferncial Lineal: Circuito LR en serie

Encontrar la solución para el problema del valor inicial (PVI), sujeta a:

a)      $ L\frac{di}{dt}+Ri=E$,             $ i(0)={{i}_{o}}$

Y, encontrar el intervalo I de solución.

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entre el coeficiente de $ \frac{di}{dt}$, que es “$ L$”, los coeficientes de los demás términos de la ecuación que dependen de “t”.

$ \frac{di}{dt}+P\left( t \right)i=f(t)$

$ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$

II.                  En el segundo paso encontramos el factor integrante: ,  

El valor de P(t) en $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}$, $ P(t)=\frac{R}{L}$.

$ {{e}^{\frac{R}{L}\mathop{\int }^{}dt}}={{e}^{\frac{R}{L}t}}$

III.                Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$ \frac{di}{dt}+\frac{R}{L}i=0$. Sustituimos en $ {{i}_{c}}=C{{e}^{\mathop{\int }^{}P(t)dt}}$, donde: $ P(t)=\frac{R}{L}$ encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula $ {{i}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( t \right)dt}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

$ {{\text{i}}_{c}}=C{{e}^{-\frac{R}{L}\mathop{\int }^{}dt}}$

$ =C{{e}^{-\frac{R}{L}t}}$

Solución Específica para el Sistema Homogéneo

Para encontrar una solución específica para el sistema homogéneo, utilizaremos los valores iniciales de $ \text{t}=0;\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }{{\text{i}}_{c}}={{i}_{0}}$ , de modo que:

Sustituyendo en:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$

Tenemos:

$ {{i}_{0}}=C\left( 1 \right)~\Rightarrow ~~C={{i}_{0}}$

Por tanto, la solución particular (específica) del sistema homogéneo asociado es:

$ {{i}_{c}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

$ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ y la solución particular  $ {{i}_{c1}}={{i}_{0}}{{e}^{-\frac{R}{L}t}}$

Intervalo de solucion de una ecuacion diferencial

La función $ {{i}_{c}}=C{{e}^{-\frac{R}{L}t}}$ , tiene como dominio más largo el intervalo:

$ D_{x_{c}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Por tanto, la solución particular $ i_{c1}=i_{0}e^{-\frac{R}{L}t}$, tiene el mismo dominio:

$ D_{x_{c1}}:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

tambien.

Es decir, el dominio de las funciones abarca todos los números reales. Notar que la solución particular solo involucra a las curvas que intersectan a

$ i(t)$, dentro del rango que estemos analizando.

El valor de $ C={{i}_{0}}$ , para la solución particular del PVI $ L\frac{di}{dt}+Ri=0$,  $ i(0)={{i}_{o}}$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $ \frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$. Para resolverla utilizamos la fórmula: $ {{i}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( t \right)dt}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( t \right)dt}}f(t)dt$, donde: $ {{e}^{\mathop{\int }^{}P\left( t \right)dt}}=\frac{R}{L}$ (obtenido en el punto ii.) y $ f\left( t \right)=\frac{E}{L}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

$ {{i}_{p}}=\frac{1}{{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{E}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}\mathop{\int }^{}{{e}^{\frac{R}{L}t}}(\frac{R}{L})dt$

$ =\frac{E}{R{{e}^{\frac{R}{L}t}}}[{{e}^{\frac{R}{L}t}}]$

$ =\frac{E}{R}$

Solución del Problema de Valores Iniciales (PVI) de la ED lineal de 1er Orden

La solución del problema del PVI se obtiene al encontrar una solución específica que cumpla con las condiciones iniciales (que las contenga), del problema. Para esto, necesitamos encontrar el valor de “C”, de la solución general, sustituyendo en la solución general, los valores de “t” e “i”, que vienen como condiciones iniciales y despejando “C”.

$ t=0;~~~~~~i={{i}_{0}}$

Por tanto:

Si la solución general del Sistema no Homogéneo es:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Entonces, sustituyendo los valores iniciales
$ i\left( 0 \right)={{i}_{0}}$

Tenemos:

$ {{i}_{0}}=C{{e}^{-\frac{R}{L}(0)}}+\frac{E}{R}$

$ \Rightarrow {{i}_{0}}=C(1)+\frac{E}{R}$

$ \Rightarrow C={{i}_{0}}-\frac{E}{R}$

Por lo que UNA solución particular del sistema no Homogéneo, es:

$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$ i\left( t \right)=C{{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

y la solución particular:
$ i\left( t \right)=({{i}_{0}}-\frac{E}{R}){{e}^{-\frac{R}{L}t}}+\frac{E}{R}$

Intervalo de solucion de una ecuacion diferencial

El dominio de la solución $ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$ está en el intervalo:

$ D_{i(t)}:- \infty < t < \infty$

O dicho de forma más común, el dominio de la solución del PVI:

($ L\frac{di}{dt}+Ri=E$,   $ i(0)={{i}_{o}}$ ), es el intervalo: $ (-\infty ,\infty )$. Notar que el valor de $ C={{i}_{0}}-\frac{E}{R}$ , para el problema del PVI.

Por tanto, la solución del Problema del Valor Inicial: $ L\frac{di}{dt}+Ri=E$, $ i(0)={{i}_{o}}$, es,

$ i\left( t \right)={{i}_{0}}{{\text{e}}^{-\frac{Rt}{L}}}+\frac{V}{R}-\frac{{{\text{e}}^{-\frac{Rt}{L}}}V}{R}~$

Con intervalo de solución:

$ \Large I:\left \{ t\epsilon R|-\infty< t< \infty \right \}$

Recordar:

Logaritmos y exponenciales

$ a\ln x=\ln {{x}^{a}}$

Debido a que:

$ y={{e}^{x}}$implica  $ x=\ln y$ y además $ \ln y={{\log }_{e}}y$ recordamos que la función $ x={{\log }_{e}}y$, es inversa de $ y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$ \ln y=\ln {{e}^{x}}=x$   y

$ {{e}^{x}}={{e}^{\ln y}}=y$

En el análisis de fenómenos físicos modelados con Ecuaciones Diferenciales en la actualidad es importante contar con un software que te permita obtener resultados tanto de las técnicas de Graficación, como de las técnicas de simulación numérica, es por eso que en este Blog he integrado la página: Haz Tu Simulación (da click aquí), donde podrás escribir tu código en los programas: Octave, Máxima, Python o SAGE, para simular y/o graficar tus modelos de ecuaciones diferenciales.

Para aprender a realizar las simulaciones de ecuaciones lineales en SAGE, visita la siguiente página: Cómo simular con SAGE.

La intuición y la confianza son parte importantes en el aprendizaje de esta materia, es por eso que para desarrollarlas será necesario practicar varias veces con los métodos y técnicas aquí descritos teniendo una actitud mental apropiada. Para que conozcas la actitud mental que me ha hecho prosperar en esta y otras materias a lo largo de mi vida, te comparto el artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, donde te revelo la actitud que me ha hecho tener éxito en materias arduas pero fascinantes como esta.

Por último te recomiendo revises los productos que me han servido en mis propios estudios; están al final del artículo: La técnica perfecta para aprender Ecuaciones Diferenciales, bajo el apartado Técnicas perfectas para aprender. Estoy seguro te servirán. 🙂

Encontraste la información que buscabas?

Necesito otros ejemplos: ejercicio 28ejercicio 29

Quiero ejemplos de circuitos electricos RLC en serie click aquí

Quiero ejemplos de circuitos electricos RC en serie click aquí

Quiero otro ejemplos de circuitos electricos RL en serie click aquí

Quiero mas ejemplos de aplicaciones

Para cualquier duda sobre los ejercicios resueltos o el sitio WEB te invito a dejar un comentario o contáctame  en esta página: Contacto (da click aquí)

Ecuacion Diferencial lineal Homogenea y su sistema no homogeneo

Ecuacion Diferencial lineal homogénea y su sistema no homogéneo; de 1er orden

Con el método de los 4 pasos que puedes encontrar en este link: ED lineal de 1er orden, click aquí, podrás resolver cualquier ecuacion diferencial lineal homogenea.

Te recomiendo que uses el método varias veces antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito. Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias Ver el siguiente link: Learn More, Study Less: The Video Course. Se que les servirá mucho.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 24). Tomado de: Dennis G. Zill Ed 7ma.

$({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$ , que es “$(x^{2} – 1)$ ”, los coeficientes de los demás términos de la ecuación que dependen de “$x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{{{(x+1)}^{2}}}{(x-1)(x+1)}$

$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Sustituimos el valor de P($x$) en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$, $P(x)=\frac{2}{{{x}^{2}}-1}$. El desarrollo de la las fracciones parciales se muestra al final del ejercicios, así como las formulas integrales y el manejo de las funciones trascendentes.

${{e}^{2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}={{e}^{2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$={{e}^{2\mathop{\int }^{}\frac{dx}{2\left( x-1 \right)}-2\mathop{\int }^{}\frac{dx}{2\left( x+1 \right)}}}$

$={{e}^{\mathop{\int }^{}\frac{dx}{\left( x-1 \right)}-\mathop{\int }^{}\frac{dx}{\left( x+1 \right)}}}$

$={{e}^{\ln |x-1|-\ln |x+1|}}$

$={{e}^{\ln \frac{|x-1|}{|x+1|}}}$

$=\frac{x-1}{x+1}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

El sistema homogéneo asociado es la ecuación diferencial:$\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=0$. Sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{2}{{{x}^{2}}-1}$, encontrado en el primer paso,  y desarrollamos. Notar que el resultado de ${{y}_{c}}$, es el recíproco del factor integrante multiplicado por C. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-2\mathop{\int }^{}\frac{dx}{{{x}^{2}}-1}}}$

$=C{{e}^{-2\mathop{\int }^{}[\frac{1}{2\left( x-1 \right)}-\frac{1}{2\left( x+1 \right)}]dx}}$

$=C{{e}^{-\ln \left| x-1 \right|+\ln |x+1|}}$

$=C{{e}^{\ln \frac{|x+1|}{|x-1|}}}$

$=C\frac{x+1}{x-1}$

Gráfica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=C\frac{x+1}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular ${{y}_{c1}}=\frac{2(x+1)}{x-1}$ donde $C=2$. Notar que la función ${{y}_{c}}=C\frac{x+1}{x-1}$  , tiene como dominio más largo el intervalo: $1<x<\infty $. Sin embargo, debido a la no definición de la gráfica en $-1 < x < 1$, se puede tomar éste intervalo para hacer evidente ésta no definición. El intervalo más largo de definición de UNA solución es: $(1, \infty )$. El intervalo de definición de una solución, por definición (ver: Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo es: $\frac{dy}{dx}+\frac{2}{{{x}^{2}}-1}y=\frac{x+1}{x-1}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{x-1}{x+1}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{x+1}{x-1}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogéneo.

${{y}_{p}}=\frac{x+1}{\text{x}-1}\mathop{\int }^{}\frac{x-1}{x+1}(\frac{x+1}{x-1})dx$

$=\frac{x+1}{\text{x}-1}\mathop{\int }^{}dx$

$=\frac{x+1}{\text{x}-1}[x]$

$=\frac{x(x+1)}{\text{x}-1}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$

ecuacion diferencial lineal homogenea

Se puede ver una solución particular $\text{y}\left( \text{x} \right)=\frac{(x+1)(2+x)}{x-1}$,

Donde: $C=2$. Nuevamente notar que la función $y=\frac{C(x+1)}{x-1}+\frac{x(x+1)}{x-1}$ , tiene como dominio el intervalo: $(-1,1)$ y como dominio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $({{x}^{2}}-1)\frac{dy}{dx}+2y={{(x+1)}^{2}}$, es:

$y=\frac{(c+x)(x+1)}{x-1}$

Con intervalo de solución:

Nota: $latex c$ puede ser negativa si se toma el valor negativo del valor absoluto del logaritmo en el paso III.

$\Large I:\left \{ x\epsilon \mathbb{R}\mid -1< x< 1 \right \}$

Recordar:

Fraciones parciales

$\frac{1}{{{x}^{2}}-1}=\frac{A}{x-1}+\frac{B}{x+1}$

$=A\left( x+1 \right)+B(x-1)$

$=Ax+A+Bx-B$

$=(A+B)x+A-B$

Igualando los términos semejantes de la derecha con los de la izquierda.

No hay términos en “x” así que:

$A+B=0$ $\Rightarrow A=-B$

Para las variables A, B solas, está el “1”

$A-B=1$  $\Rightarrow A=1+B$

Por tanto:

$-B=1+B$

$2B=-1$

$B=-\frac{1}{2}$ $\Rightarrow A=\frac{1}{2}$

De donde:

$\frac{1}{{{x}^{2}}-1}=\frac{\frac{1}{2}}{x-1}-\frac{\frac{1}{2}}{x+1}$

$\frac{1}{{{x}^{2}}-1}=\frac{1}{2(x-1)}-\frac{1}{2(x+1)}$

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Se un Experto

¿Quieres GANAR DINERO y convertirte en un Experto mientras estudias?

Te invito a que te inscribas a los cursos que te ofrecemos en afiliación con nuestros socios.

Ve a la página de nuestros cusos, da click aquí: Programar en Python y MATLAB e inscribete a alguno de los cursos que tenemos para ingenieros eléctricos.

Ecuacion Diferencial lineal de primer orden, homogenea y no homogenea

Ecuacion Diferencial lineal homogenea y no homogenea

Con el método de los 4 pasos podrás resolver cualquier ED lineal de 1er orden.

Te recomiendo que uses el método varias veces para resolver cualquier ecuacion diferencial lineal homegenea y no homogenea, usándolo antes de entrar a la teoría, pues la mente necesita estar acostumbrada a manejar la simbología, el álgebra y la secuencia de cualquier método para posteriormente poder entenderlo con éxito.

Esto lo saque de las nuevas corrientes de aprendizaje holístico, PNL y neurociencias. Espero te sirva.

Método: Factor Integrante (ver enlace)

Ejercicios 2.3 Libro Dennis G. Zill (Problema 23). Tomado de: Dennis G. Zill Ed 7ma.

$x\frac{dy}{dx}+\left( 3x+1 \right)y={{e}^{-3x}}$

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$x$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dy}{dx}+P\left( x \right)y=f(x)$

$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$

II.                  En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( x \right)\mathbf{dx}}}$,  

Para esto sustituimos el valor de $P\left( x \right)dx$en ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$,   donde:$P(x)=\frac{(3x+1)}{x}$. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\frac{3x+1}{x}dx}}={{e}^{3\mathop{\int }^{}dx+\mathop{\int }^{}\frac{1}{x}dx}}$

$={{e}^{3x+\ln x}}$

$=\text{x}{{e}^{3x}}$

III.                    Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=0$ . Para resolverla sustituimos en la fórmula: ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, los valores de $P(x)=\frac{\left( 3x+1 \right)}{x}$, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{y}}_{c}}=C{{e}^{-\mathop{\int }^{}\frac{3x+1}{x}dx}}$

$=C{{e}^{-3\mathop{\int }^{}dx-\mathop{\int }^{}\frac{1}{x}dx}}$

$=C{{e}^{-3x-\ln x}}$

$=C{{e}^{-3x+\ln {{x}^{-1}}}}$

$=C{{x}^{-1}}{{e}^{-3x}}$

$=\frac{C{{e}^{-3x}}}{x}$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular ${{y}_{c1}}=-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}$ donde $C=-{{e}^{\frac{3}{2}}}$. Notar que la función ${{y}_{c}}=\frac{C{{e}^{-3x}}}{x}$ , tiene como dominio más largo el intervalo: $0<x<\infty $.</x<\

El intervalo más largo de definición de UNA solución es: $(0~,\infty )$, aunque el intervalo para la función es: $y:\{x\in \mathbb{R}-\left( 0 \right)\}$, o dicho de otra forma más sencilla, el valor de la función $y$, es: $\left( -\infty ,0 \right);(0,\infty )$. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}Q\left( x \right)dx}}=\text{x}{{e}^{3x}}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{{{e}^{-3x}}}{x}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{y}_{p}}=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}x{{e}^{3x}}(\frac{{{e}^{-3x}}}{x})dt$

$=\frac{1}{x{{e}^{3x}}}\mathop{\int }^{}dx$

$=\frac{1}{x{{e}^{3x}}}[x]$

$={{e}^{-3x}}$

Gráfica de la familia de soluciones del sistema no homogéneo:

$y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

ecuacion diferencial lineal homegenea y no homogenea

Se puede ver una solución particular $y\left( x \right)={{\text{e}}^{-3x}}-\frac{{{\text{e}}^{\frac{3}{2}-3x}}}{x}-\frac{{{\text{e}}^{-3x}}}{2x}$, Donde: $C=-\frac{1}{2}-{{e}^{\frac{3}{2}}}$. Nuevamente notar que la función $y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$ , tiene como dominio el intervalo (más largo): 0 Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dy}{dx}+\frac{\left( 3x+1 \right)}{x}y=\frac{{{e}^{-3x}}}{x}$, es:

$\Large y=\frac{C{{e}^{-3x}}}{x}+{{e}^{-3x}}$

Con intervalo de solución:

$I:\left \{ x\epsilon \mathbb{R}\mid 0< x< \infty  \right \}$

Ecuacion diferencial lineal homegenea y no homogenea (Conceptos a recordar)

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Ecuaciones Diferencial

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO de Ecuacioenes Diferenciales veremos:

  • Realizar Modelado Matemático. Te enseñamos a saber:
  • Aplicar los algoritmos de solución. Te enseñamos a saber 
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales

Ecuacion Diferencial lineal. D. G. Zill Capitulo 2.3, Problema 21

Ecuacion Diferencial lineal

El siguiente método te ayudará a resolver cualquier tipo de ED lineal de primer orden en 4 pasos sencillos, utilízalo varias veces antes de tratar entenderlo, es mi recomendación, posteriormente podrás ver con mayor facilidad de donde salen las ecuaciones, aquí las explicaremos.

Resolución de ED lineales Libro de Dennis G. Zill Ed 7ma.

Método: Factor Integrante

1. Forma Standard:  $\frac{dy}{dx}+P\left( x \right)y=f(x)$

2. Factor Integrante: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}$

Forma de solución: $y={{y}_{c}}+{{y}_{p}}$

3.                                  ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$

4.                                  ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$

Ecuacion Diferencial Ejercicios Resueltos 2.3 Libro Dennis G. Zill (Problema 21)

Ejemplo de solución de una Ecuacion Diferencial lineal con funciones trascendentes

$\frac{dr}{d\theta }+r\sec \theta =\cos \theta $

Pasos:

I.                    El primer paso consiste en escribir la forma estándar de la ED a resolver:

Dividimos, entonces, entre el coeficiente de $\frac{dy}{dx}$, que es “$1$”, los coeficientes de los demás términos de la ecuación que dependen de “x”. Simplificamos.

$\frac{dr}{d\theta }+P\left( \theta \right)r=f(\theta )$

$\frac{dr}{d\theta }+r\sec \theta =\cos \theta $

II.                    En el segundo paso encontramos el factor integrante: ${{\mathbf{e}}^{\mathop{\int }^{}\mathbf{P}\left( \theta \right)\mathbf{d}\theta }}$,

Para esto sustituimos el valor de P($\theta $) en ${{e}^{\mathop{\int }^{}P\left( \theta \right)d\theta }}$, donde:$P(\theta )=\sec \theta $. Para recordar las formulas integrales y el manejo de las funciones trascendentes y las funciones trigonométricas, vea el final del ejercicio.

${{e}^{\mathop{\int }^{}\sec \theta d\theta }}={{e}^{\ln (\sec \theta +\tan \theta )}}$

$=\sec \theta +\tan \theta $

III.                  Como tercer paso, encontramos la familia de soluciones del sistema homogéneo asociado:

Recordemos que el sistema homogéneo asociado, en este caso, es la ecuación diferencial:$\frac{dr}{d\theta }+r\sec \theta =0$ . Para resolverla sustituimos en la fórmula: ${{r}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( \theta \right)d\theta }}$, los valores de $P(\theta )=\sec \theta $, encontrado en el primer paso,  y desarrollamos. Para esclarecer de donde sale la fórmula ${{y}_{c}}=C{{e}^{-\mathop{\int }^{}P\left( x \right)dx}}$, siga el siguiente enlace: Solución del sistema homogéneo asociado.

${{\text{r}}_{c}}=C{{e}^{-\mathop{\int }^{}\sec \theta d\theta }}$

$=C{{e}^{-\ln (\sec \theta +\tan \theta )}}$

$=C{{e}^{\ln {{(\sec \theta +\tan \theta )}^{-1}}}}$

$=C{{(\sec \theta +\tan \theta )}^{-1}}$

$=\frac{C}{\sec \theta +\tan \theta }$

Grafica de la familia de soluciones del sistema homogeneo asociado:

${{r}_{c}}=\frac{C}{\sec \theta +\tan \theta }$

Ecuacion Diferencial lineal con valores trascendentes

 Notar que como función, la solución general $r(\theta )=\frac{C+\theta -\cos \theta }{\sec \theta +\tan \theta }$, tiene como dominio todo el conjunto de los reales exceptuando $\theta =\frac{\pi }{2}\pm \pi $;

sin embargo, como función SOLUCIÓN, el dominio mas largo es el indicado: $I:\left\{ x\in R|-\frac{\pi }{2}\le x\le \frac{\pi }{2} \right\}$

En esta gráfica es mas claro lo mencionado arriba. Es la misma gráfica anterior, sin ejes de simetría

Ecuacion Diferencial lineal con valores trascendentes

Se puede ver una solución particular ${{r}_{c}}=\frac{1-3\pi }{\sec \left( \theta \right)+Tan(\theta )}$ donde . Notar que la función
${{r}_{c}}=\frac{C}{\sec \theta +\tan \theta }$ , tiene como dominio más largo el intervalo: $-\frac{\pi }{2}\le x\le \frac{\pi }{2}$ (analizar el denominador de la función$\frac{C}{\sec \theta +\tan \theta }$. El intervalo más largo de definición de UNA solución es: $(-\frac{\pi }{2}~,\frac{\pi }{2})$, y que para $r(\frac{\pi }{2})\Rightarrow \sec \frac{\pi }{2}+\tan \frac{\pi }{2}$ y ninguna de las dos funciones están definidas para ese valor. Este es un caso especial para cuando $\theta =\frac{\pi }{2}$ , $r(\frac{\pi }{2})$ no está definida a menos que sea para la solución trivial $r(\theta )$=0 , Ver la gráfica al final del ejercicio. El intervalo de definición de una solución, por definición (ver Intervalo de definición de una solución I), necesita cumplir al menos 2 criterios para ser considerado válido: 1. Que la función solución que se encuentra esté definida en él (no necesariamente continua, una función definida por partes también puede calificar), y 2. Que esta función sea, también, derivable dentro del intervalo.

IV. En el cuarto paso, encontramos una solución particular a partir del sistema no homogéneo:

El sistema no homogéneo, en este caso, es la ecuación diferencial: $\frac{dy}{dx}+\frac{4}{(x+2)}y=\frac{5}{{{(x+2)}^{2}}}$, que representa la familia de soluciones particulares de la ED lineal. Para resolverla utilizamos la fórmula: ${{y}_{p}}=\frac{1}{{{e}^{\mathop{\int }^{}P\left( x \right)dx}}}\mathop{\int }^{}{{e}^{\mathop{\int }^{}P\left( x \right)dx}}f(x)dx$, donde: ${{e}^{\mathop{\int }^{}P\left( x \right)dx}}=\frac{4}{(x+2)}$ (obtenido en el punto ii.) y $f\left( x \right)=\frac{5}{{{(x+2)}^{2}}}$ obtenido en el punto i. Para ver de dónde salen estas siga el enlace siguiente: solución del sistema no homogeneo.

${{r}_{p}}=\frac{1}{\sec \theta +\tan \theta }\mathop{\int }^{}(\sec \theta +\tan \theta )\cos \theta d\theta $

$=\frac{1}{\sec \theta +\tan \theta }\mathop{\int }^{}(\frac{1}{\cos \theta }+\frac{\sin \theta }{\cos \theta })\cos \theta d\theta $

$=\frac{1}{\sec \theta +\tan \theta }\mathop{\int }^{}(1+\sin \theta )d\theta $

$=\frac{1}{\sec \theta +\tan \theta }\mathop{\int }^{}d\theta +\mathop{\int }^{}\sin \theta d\theta $

$=\frac{1}{\sec \theta +\tan \theta }(\theta -\cos \theta )$

$=\frac{\theta -\cos \theta }{\sec \theta +\tan \theta }$

Gráfica de la familia de soluciones del sistema no homogéneo (con ejes de simetría):

$r=\frac{C}{\sec \theta +\tan \theta }+\frac{\theta -\cos \theta }{\sec \theta +\tan \theta }$

Ecuacion Diferencial lineal con valores trascendentes

Misma gráfica anterior, sin ejes de simetría

Ecuacion Diferencial lineal con valores trascendentes

Se puede ver una solución particular $r\left( \theta \right)=\frac{1-3\pi +\theta -\cos \theta }{\sec \theta +\tan \theta }$, Donde: $C=1-3\pi $. Nuevamente notar que la función

$r=\frac{C}{\sec \theta +\tan \theta }+\frac{\theta -\cos \theta }{\sec \theta +\tan \theta }$ , tiene como dominio el intervalo (más largo): $(-\frac{\pi }{2},\frac{\pi }{2})$ . Ver la gráfica al final del ejercicio. Por definición (ver Intervalo de definición de una solución I), el intervalo que contiene la solución de una ED, debe cumplir con 2 criterios: que la función esté definida y sea derivable en dicho intervalo.

Por tanto, la solución general de la ecuación diferencial $\frac{dr}{d\theta }+r\sec \theta =\cos \theta $ , es:

$\huge r=\frac{C+\theta -\cos \theta }{\sec \theta +\tan \theta }$

Gráfica que señala el dominio más largo de la solución general de la ED lineal.

Ecuacion Diferencial lineal con valores trascendentes

Se puede ver con claridad como la función solución  $r(\theta )=\frac{C+\theta -\cos \theta }{\sec \theta +\tan \theta }$ No está definida para los puntos donde: $\theta =\frac{\pi }{2}\pm \pi $, pues en estos puntos $r\left( \frac{\pi }{2} \right)=0$, nada más, y adquiere otro valor diferente a este, como por ejemplo: $r\left( \frac{\pi }{2} \right)=5$, cosa que sí ocurre con los valores dentro del intervalo $I=(-\frac{\pi }{2},\frac{\pi }{2})$, o más formalmente:  $I:\left\{ x\in R|-\frac{\pi }{2}\le x\le \frac{\pi }{2} \right\}$

Recordar:

Logaritmos y exponenciales

$a\ln x=\ln {{x}^{a}}$

Debido a que:

$y={{e}^{x}}$ implica  $x=\ln y$ y además $\ln y={{\log }_{e}}y$ recordamos que la función $x={{\log }_{e}}y$, es inversa de $y={{e}^{x}}$, por tanto si multiplicamos esta última función por ln obtendremos:

$\ln y=\ln {{e}^{x}}=x$   y

${{e}^{x}}={{e}^{\ln y}}=y$

Ecuaciones Diferenciales

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Aplicaciones de las Ecuaciones Diferenciales