Ecuaciones Diferenciales Exactas

Ecuaciones Diferenciales Exactas

El siguiente método te ayudara a resolver cualquier tipo de ecuaciones diferenciales exactas de primer orden en 4 pasos sencillos.

Estudios científicos recientes realizados por el Dr. Terrence Sejnowski investigador el Instituto Howard Huges, apuntan a que utilizar el pensamiento difuso a la vez que el enfocado durante en proceso de aprendizaje es una técnica efectiva para aprender cualquier cosa, ya que se necesita acceder recursos de la mente que se ignoran al momento de estar enfocado.

Una de las forma de utilizar el pensamiento enfocado y el difuso como lo dice el Dr. Terrence, es mediante el aprender haciendo y para eso te propongo que emplees los pasos que te describo sin tratar de entenderlos del todo al principio y confiando que, cuando entres en el modo de pensamiento difuso (al realizar otra actividad que te despeje de tu concentración) el entendimiento conceptual de los temas se dará.

El método para resolver en 4 pasos ED exactas lo describo a continuación:

METODO DE 4 PASOS PARA RESOLVER ECUACIONES DIFERENCIALES EXACTAS

Primero definimos si la ecuacion es exacta o no, mediante los siguiente dos
criterios:

  • FORMA ESTÁNDAR DE LA ED EXACTA

$M ( x,y ){dx} +N ( x,y ){dy} =0$

  • CRITERIO PARA DEFINIR EXACTITUD DE LA ED

$\frac{{\delta}M}{{\delta}y} =\frac{{\delta}N}{{\delta}x}$

4 PASOS PARA RESOLVER ECUACIONES DIFERENCIALES EXACTAS

1. $F ( x,y ) = \int M ( x,y ) d x+g ( y )$

2. $\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x+g’ (y ) =N ( x,y )$

3. $g ( y ) = \int N ( x,y ) d y- \int\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x d y$

4. Sustituimos $g ( y )$ del paso (3) en (1) e igualamos a $c $ (c = constante)

$\int M ( x,y ){dx} +g ( y ) =c$

Si encontramos que la funcion $N ( x,y )$, es más facilmente integrable podemos utilizar los mismos cuatro pasos en funcion de $N$, ver el Ejemplo 5 al final y/o revisar los 4 pasos del método alternativo, click aqui.

EJEMPLOS RESUELTOS DE ECUACIONES DIFERENCIALES EXACTAS

En los siguientes problemas determine si la ED es exacta, si lo es resuelvala.

Ejemplo 1. Ejercicios 2.4 Libro Dennis G. Zill (problema 3)

$\large ( 5x+4y ) d x+ ( 4x-8y^{3} ) d y=0$

-Determinamos si es exacta la ED

$M ( x,y ) d x=5x+4y$;        $N ( x,y ) =4x-8y^{3}$

$\frac{{\delta}M}{{\delta}y} =4$;        $\frac{{\delta}N}{{\delta}x} =4$

-De donde concluimos que la ecuación si es exacta ya que:

$\frac{{\delta}M}{{\delta}y} =\frac{{\delta}N}{{\delta}x}$

Resolvemos la ecuación de acuerdo a los pasos listados anteriormente

Paso 1.

\begin{eqnarray*}
\int M ( x,y ){dx} +g ( y ) & = & \int ( 5x+4y ) d x+g ( y )\\
& = & 5 \int x d x+4y \int d x+g ( y )\\
& = & \frac{5}{2} x^{2} +4x y+g ( y )
\end{eqnarray*}

Paso 2.

\begin{eqnarray*}
\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x+g’ ( y ) & =
& N ( x,y )\\
\Rightarrow \frac{{\delta}}{{\delta}y} \left( \frac{5}{2}
x^{2} +4x y \right) +g’ ( y ) & = & 4x-8y^{3}\\
\Rightarrow 0+4x+g’ ( y ) & = & 4x-8y^{3}\\
\Rightarrow 0+g’ ( y ) & = & -8y^{3}\\
g’ ( y ) & = & -8y^{3}
\end{eqnarray*}

Paso 3.

\begin{eqnarray*}
g ( y ) & = & \int N ( x,y ) d y- \int
\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x d y\\
g ( y ) & = & -8 \int y^{3} d y\\
& = & – \frac{8}{4} y^{4}\\
& = & -2y^{4}
\end{eqnarray*}

Paso 4.

\begin{eqnarray*}
\int M ( x,y ) d x+g ( y ) & = & c\\
\frac{5}{2} x^{2} +4x y-2y^{4} & = & c
\end{eqnarray*}

La solución es:
$\large \frac{5}{2} x^{2} +4x y-2y^{4} =c$

Ejemplo 2. Ejercicios 2.4 Libro Dennis G. Zill (problema 5)

$\large ( 2x y^{2} -3 ) d x+ ( 2x^{2} y+4 ) d y=0$

-Determinamos si es exacta la ED

$M ( x,y ) =2x y^{2} -3$;        $N ( x,y ) =2x^{2}y+4$

$\frac{{\delta}M}{{\delta}y} =4x y$;        $\frac{{\delta}N}{{\delta}x}=4x y$

-De donde concluimos que la ecuación si es exacta ya que:

$\frac{{\delta}M}{{\delta}y} =\frac{{\delta}N}{{\delta}x}$

Resolvemos la ecuación de acuerdo a los pasos listados anteriormente

Paso 1.

\begin{eqnarray*}
\int M ( x,y ) d x+g ( y ) & = & 2y^{2} \int x d x-3 \int d x+g ( y )\\
& = & \tfrac{2}{2} y^{2} x^{2} -3x+g ( y )\\
& = & y^{2} x^{2} -3x+g ( y )
\end{eqnarray*}

Paso 2.

\begin{eqnarray*}
\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x+g’ ( y ) & =
& N ( x,y )\\
\Rightarrow \frac{{\delta}}{{\delta}y} ( y^{2} x^{2} -3x )
+g’ ( y ) & = & 2x^{2} y+4\\
\Rightarrow 2x^{2} y+g’ ( y ) & = & 2x^{2} y+4\\
\Rightarrow g’ ( y ) & = & 4
\end{eqnarray*}

Paso 3.

\begin{eqnarray*}
g ( y ) & = & \int N ( x,y ) d y- \int
\frac{{\delta}}{{\delta}y} \int M ( x,y ) d x d y\\
g ( y ) & = & 4 \int d y\\
g ( y ) & = & 4y
\end{eqnarray*}

Paso 4.

\begin{eqnarray*}
\int M ( x,y ) d x+g ( y ) & = & c\\
\Rightarrow y^{2} x^{2} -3x+4y & = & c
\end{eqnarray*}

La solución es:
$\large y^{2} x^{2} -3x+4y=c$

Ejemplo 3. Ejercicios 2.4 Libro Dennis G. Zill (problema 6)

$\large \left( 2y- \frac{1}{x} + \cos 3 x \right) \frac{d y}{d x} + \frac{y}{x^{2}}-4x^{3} +3y \sin 3x = 0$

-Determinamos si es exacta la ED, pero en este caso antes, escribimos la FORMA ESTANDAR, de una ecuación exacta.

$\left( 2y- \frac{1}{x} + \cos 3x \right) d y+ \left( \frac{y}{x^{2}} -4x^{3} +3y\sin 3x\right) dx=0$

– Determinamos exactitud de la ED

$M ( x,y ) = \frac{y}{x^{2}} -4x^{3} +3y \sin 3x$;        $N ( x,y ) =2y- \frac{1}{x} + \cos 3x$

$\frac{{\delta}M}{{\delta}y} =\frac{1}{x^{2}}+3 \sin{3x}$;        $\frac{{\delta}N}{{\delta}x} = -\frac{1}{x^{2}} – 3 \sin 3x$

-De donde concluimos que la ecuación NO es exacta ya que:

$\frac{{\delta}M}{{\delta}y} \neq\frac{{\delta}N}{{\delta}x}$

Ejemplo 4. Ejercicios 2.4 Libro Dennis G. Zill (problema 7)

$\large ( x^{2} -y^{2} ) d x+ ( x^{2} -2x y ) d y=0$

-Determinamos si es exacta la ED

$M ( x,y ) =x^{2} -y^{2}$;        $N ( x,y ) =x^{2} -2x y$

$\frac{{\delta}M}{{\delta}y} =-2y$;        $\frac{{\delta}N}{{\delta}x} =2x-2y$

-De donde concluimos que la ecuación NO es exacta ya que:

$\frac{{\delta}M}{{\delta}y} \neq\frac{{\delta}N}{{\delta}x}$

Ejemplo 5. Ejercicios 2.4 Libro Dennis G. Zill (problema 8)

$\large \left( 1+ \ln x+ \frac{y}{x} \right) d x= ( 1- \ln x ) d y$

-Determinamos si es exacta la ED, pero en este caso antes, escribimos la FORMA ESTANDAR, de una ecuación exacta.

$\left( 1+ \ln x+ \frac{y}{x} \right) d x- ( 1- \ln x ) d y=0$

$\left( 1+ \ln x+ \frac{y}{x} \right) d x+ ( -1+ \ln x ) d y=0$

-Determinamos si es exacta la ED

$M ( x,y ) =1+ \ln x+ \frac{y}{x}$;        $N ( x,y ) =-1+\ln x$

$\frac{{\delta}M}{{\delta}y} = \frac{1}{x}$;        $\frac{{\delta}N}{{\delta}x} = \frac{1}{x}$

-De donde concluimos que la ecuación si es exacta ya que:

$\frac{{\delta}M}{{\delta}y} = \frac{{\delta}N}{{\delta}x}$

Resolvemos la ecuación de acuerdo a los pasos listados anteriormente

Paso 1.

\begin{eqnarray*}
\int N ( x,y ){dy} +h ( x ) & = & \int ( -1+ \ln x ) d y+h ( x )\\
& = & – \int d y+ \ln x \int d y+h ( x )\\
& = & -y+y \ln x+h ( x )
\end{eqnarray*}

Paso 2.

\begin{eqnarray*}
\frac{{\delta}}{{\delta}x} \int N ( x,y ) d y+h’ ( x ) & =
& M ( x,y )\\
\Rightarrow \frac{{\delta}}{{\delta}x} ( -y+y \ln x )
+h’ ( x ) & = & 1+ \ln x+ \frac{y}{x}\\
\Rightarrow y \left( \frac{1}{x} \right) +h’ ( x ) & = & 1+ \ln x +
\frac{y}{x}\\
\Rightarrow h’ ( x ) & = & 1+ \ln x+ \frac{y}{x} – \frac{y}{x}\\
\Rightarrow h’ ( x ) & = & 1+ \ln x
\end{eqnarray*}

Paso 3.

\begin{eqnarray*}
h ( x ) & = & \int M ( x,y ) d x- \int
\frac{{\delta}}{{\delta}x} \int N ( x,y ) d y d x\\
\Rightarrow h ( x ) & = & \int ( 1+ \ln x d x ) d x\\
& = & \int d x+ \int \ln x d x
\end{eqnarray*}

Integramos por partes la integral $\int \ln x d x$:

$d v=d x$;        $u= \ln x$

$v=x$;        $d u= \frac{1}{x}$

  • Por tanto:
\begin{eqnarray*}
\int \ln x d x & = & x \ln x – \int \frac{x}{x} d x\\
& = & x \ln x – \int d x\\
& = & x \ln x – x
\end{eqnarray*}

De modo que, regresando a nuestro ejercicio:

\begin{eqnarray*}
h ( x ) & = & x+x \ln x – x\\
& = & x \ln x
\end{eqnarray*}

Paso 4.

\begin{eqnarray*}
\int N ( x,y ) d y+h ( x ) & = & c\\
\Rightarrow -y+y \ln x+x \ln x & = & c
\end{eqnarray*}

La solución es:
$\large -y+y \ln x+x \ln x=c$
$\large y ( x ) = \frac{-x \ln x +c}{\ln x – 1}$

La representación gráfica de las curvas solución de éste último ejemplo, se muestra en la Figura 1.

ecuaciones diferenciales exactas
Figura 1. Gráfica de Relieve para la solución del Ejemplo 5.

Ésta gráfica se puede ver en tonos de azul más oscuro las partes bajas del relieve y en tonos más claros las partes mas elevadas, ver más abajo una representación en 3D.

Una representación en 2D, de la familia de curvas solución para el Ejemplo 5, se muestra a continuación.

ecuaciones diferenciales exactas
Figura 2. Familia de soluciones para la Ecuación Diferencial Exacta del Ejemplo 5.

Por último, te dejo el código de MATHEMATICA, para obtener las gráficas de arriba:

Clear[''Global`*'']
P[x_, y_] := (1 + Log[x] + y/x)
Q[x_, y_] := (-1 + Log[x])

(*Criterio de EXACTITUD*)
xx = Exct == Simplify[D[P[x, y], y] - D[Q[x, y], x]] (* Es exacta? *)

(*Paso 1*)
f3 = fx == Integrate[Q[x, y], y] + h[x]

(*Paso 2*)
df3 = D[f3[[2]], x] == P[x, y]

(*Paso 3*)
s3 = Solve[df3, h'[x]] // Expand

(*Paso 4*)
sf3 = hx == Integrate[s3[[1, 1, 2]], x]
sg3 = f == Evaluate [f3[[2]] /. h[x] -> sf3[[2]]] // Expand
Solve[sg3[[2]] == c, c] // Expand

(* GRÁFICA *)
eqn = y'[x] == -P[x, y[x]]/ Q[x, y[x]]; 
sol = DSolve[eqn, y[x], x] // Simplify
sols = Table[Evaluate[sol[[1, 1, 2]] /. C[1] -> i], {i, -8, 8, 4}];
Plot[Tooltip[sols], {x, .1, 5}, PlotRange -> {-100, 100}, 
 PlotStyle -> Thick]
ContourPlot[-y + x Log[x] + y Log[x], {x, .1, 5}, {y, -100, 100}]

Ecuaciones Diferenciales Exactas. Video

Aquí te dejo éste video para dejar claro, de una vez por todas, ¿Qué es una ecuación diferencial exacta? y ¿Cómo se construye el método de solución? entre otras cosas. Estoy seguro que te servirá mucho 😉


Ecuaciones Diferencial

Programa Completo

Apúntate a nuestro PROGRAMA COMPLETO de Ecuaciones Diferenciales y conviertete en lo que ERES. Aduéñate de todos los proyectos!!!

Dale click al siguiente enlace e inscríbete YA!!!

Programa Completo de Ecuaciones Diferenciales, click aquí

Para que obtengas la confianza necesaria en tu vida PROFESIONAL y en tu persona realiza ejercicios de aplicación y practica

En nuestro PROGRAMA COMPLETO DE ECUACIONES DIFERENCIALES aprenderás:

  • Realizar Modelado Matemático
  • Aplicar los algoritmos de solución. Te enseñamos a saber:
    • ¿Por donde Empezar cuando tengo una ED enfrente?
    • ¿Qué tipo de Ecuacion Diferencial tengo enfrente?
    • ¿Qué método emplear para resolve la ED que tengo enfrente?
  • Realizar simulación por computadora (simbólica y numérica) para transformar tu realidad y la de tu entorno, brindando servicio efectivo y sintiendote realizado como ingeniero, como matemñatico aplicado
  • Inscríbete a nuestro PROGRAMA COMPLETO de ECUACIONES DIFERENCIALES

Practica y Programa para que obtengas la confianza necesaria

Realiza más ejercicios donde utilices este método, sobre todo si vas empezando y quieres rápidamente resolver problemas, luego cuando tengas mas disponibilidad mental para profundizar los conceptos utiliza tus propios métodos y así afianzarás más TU CONFIANZA y TU HABILIDAD.

  • Utiliza las técnicas que te presento antes de analizarlos para preparar tu mente, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tendrás la información necesaria para que tu mente entienda con facilidad los conceptos más abstractos.
  • Para adueñarte de los conceptos, utiliza programación. La programación te ayudará a entender a fondo lo que estas haciendo, ya que tendras que trasladar los conceptos a la computadora y sobre todo, podras simuladr gáfica y numéricamente tus resultados.

Programar en Python y MATLAB

Visita la selección de cursos que te ofrecemos junto con nuestros afiliados, para desarrollar tus habilidades matemáticas, aprobar tus exámenes o realizar tus proyectos e incluso independizarte generando tus propios ingresos, da click aquí y aprende a programar en Python y MATLAB

Click en la imagen 👇

Elabora tu propio camino, inscríbite a un curso para principiantes, si no te sientes con las bases suficientes y después en otro para ingenieros y/o emprendedores y hazte independiente al programar en python y matlab


¿Encontraste la información que buscabas?

Para que obtengas la confianza necesaria deberás practicar los ejercicios con las técnicas que te presento antes de analizarlos para preparar tu mente, de manera que luego, al estudiar los conceptos a fondo tengas toda la información necesaria y verás como todo se aclara, pues tendrás la información necesaria para que tu mente entienda con facilidad los conceptos más abstractos.

Da click aquí para leer sobre la mejor técnica para aprender ecuaciones diferenciales.

Te invito a que me contactes aquí para cualquier sugerencia sobre la página y si tienes una duda en particular sobre el tema tratado, por favor, deja tu comentario al final de esta página. Que estés bien. 😉

52 pensamientos en “Ecuaciones Diferenciales Exactas

  1. muchas gracias por la enseñanza muy clara y con ejemplos resueltos que se agradece, te lo dice un estudiante de quintero, v region luchando por ser mejor cada dia. Gracias

  2. ayuda me podrias explicar como resolver la siguiente ecuacion diferencial por el metodo de exactas (10 – 6y + e^-3x) dx – 2 dy = 0

    • Daniel
      Revisa si es exacta o si es de otro tipo antes de proceder:
      El criterio es generalmente es:
      1.- escribes la ED en la forma \( \frac{dy}{dx}=f(x,y) \);, primero
      2.- Descartas la posibilidad de que sea_
      a. Separable (o separable por sustitución)
      b. Lineal de 1er orden
      – De Bernoulli
      – De Ricatti
      3.- Homogenea
      4.- Exacta
      (NOTA: éste es el criterio mas o menos que sigo yo)
      En este caso, la ED es lineal de 1er orden.
      Aquí te dejo la solución:

      $$(10 – 6 y + e^{- 3 x})dx – 2 dy = 0$$

      Escribimos la ED en la forma: \( \frac{dy}{dx} = f (x, y) \):

      $$(10 – 6 y + e^{- 3 x}) dx – 2 dy = 0$$

      $$\Rightarrow 2 \frac{dy}{dx} = 10 – 6 y + e^{-3 x}$$

      $$\Rightarrow \frac{dy}{dx} = 5 – 3 y + \frac{1}{2} e^{- 3 x}$$

      $$\Rightarrow \frac{dy}{dx} + 3 y = 5 + \frac{1}{2} e^{- 3 x}$$

      Utilizando el metodo de factores integrantes:

      I. Obtienes el Factor Integrante(FI)

      $$e^{\int P (x) dx} = e^{3 \int dx} = e^{3 x}$$

      II. Multiplicas el FI por toda la ED

      $$e^{3 x} \frac{dy}{dx} + e^{3 x} (3) y = 5 e^{3 x} + \frac{1}{2}$$

      $$\Rightarrow \frac{d [e^{3 x} y]}{dt} = 5 e^{3 x} + \frac{1}{2}$$

      III. Integrando:

      $$e^{3 x} y = 5 \int e^{3 x} dx + \frac{1}{2} \int dx + C$$

      $$\Rightarrow e^{3 x} y = \frac{5}{3} \int e^{3 x} (3) dx + \frac{1}{2} \int dx + C$$

      $$\Rightarrow e^{3 x} y = \frac{5}{3} e^{3 x} + \frac{1}{2} x + C$$

      IV. Por tanto, el resultado es:

      $$y (x) = \frac{5}{3} + \frac{1}{2} x e^{- 3 x} + C e^{- 3 x}$$

      La metodologia usada para resolver mediante Factores Integrantes la puedes ver mas detallada en el siguiente artículo:Factores Integrantes
      Saludos

  3. Creo que tienes un error en el ejemplo 3. haces la derivada con respecto a y de lo que esta multiplicando dy, cuando debería de ser con respecto a x no? Si lo haces de esa forma si da una edo exacta. A lo mejor me estoy equivocando, pero para que le eches un vistazo por si a caso. Saludos y gracias por el aporte

  4. Buenas noches, por favor explícame cómo resolver la siguiente ecuación diferencial:

    x dx + y dy = (y dx – x dy)/(x^2 + y^2)

    Necesito comprobar si es exacta, de ser así resolverla por ese método.

    Muy buen aporte, gracias. Saludos!

    • Si es una ED exacta Daniel

      $$x dx + y dy = \frac{y dx – x dy}{x^2 + y^2}$$

      $$x dx + y dy = \frac{y dx}{x^2 + y^2} – \frac{x dy}{x^2 + y^2}$$

      $$x dx – \frac{y dx}{x^2 + y^2} + y dy + \frac{x dy}{x^2 + y^2} = 0$$

      $$\left( x – \frac{y}{x^2 + y^2} \right) dx + \left( y + \frac{x}{x^2 + y^2} \right) dy = 0$$

      Usa:

      \(M = x – \frac{y}{x^2 + y^2}\) y \(N = y + \frac{x}{x^2 + y^2}\)

      y sigue los pasos del artículo, Daniel

      Saludos

      • A mi no me dió una ecuación diferencial exacta, ya que en la comprobación lo que me resultó fué: M = 1/2x^2y, N = 1/2xy^2. Sí estoy equivocado por favor responder y explicarme en que estoy errado.

  5. Hola buenas tardes, me ha sido de gran ayude su explicación, muchas gracias.

    Quería saber si puede ayudarme con los siguientes:

    a. (x-y^3+y^2 sin(x)) dx = (3 x y^2+2 y cos(x)) dy

    b. (tan(x)-sin(x) sin(y)) dx+(cos(x) cos(y)) dy = 0

    c. (2y senx cosx – y+ 2y^2 e^(xy^2) dx = (x -sen^2x – 4xye^(xy^2)) dy

    pd: son Ejercicios 2.4 Libro Dennis G. Zill (problema 9, 17 y 18)

    En espera de su respuesta, muchas gracias.

    saludos!

  6. Hola , recuerdo que hay un método para resolver las ecuaciones exactas , cuando no son exactas , podrías ayudarme a recordar como es dicho método ? muchas gracias tu explicación es fácil de entender . Saludos

    • christian
      encuentra el factor integrante, lo puedes hacer mediante la siguente fórmula:
      $\mu (x)=\exp\left ( \int \frac{My-Nx}{N}dx \right )$
      o mejor aún, sigue los pasos que encontrarás en éste enlace: ED No Exacta hecha exacta, click aquí
      El factor integrante te debe dar:
      FI = $\frac{1}{x}$
      Multiplicas eso FI por toda le ecuación, como lo indica en el enlace que te estoy enviando y resulves mediante los 4 pasos para la solución de ED’s exactas (una vez que la hayas convertido en una)
      La solución de la ED es:
      $y(x) = -\frac{x}{\log(x)} + \frac{C1}{\log(x)}$
      Saludos

  7. Que tal compñero una pregunta
    me podrias ayudar con estos problemitas de ED exactas
    a) (4y+2x-5)dx + (6y4x-1)dy=0
    b) (y^2 cosx -3x^2y -2x)dx + (2y senx -x^3+lny)dy=0
    c) (e^2+2yx coshx) y´+xy^2senhx +y^2coshx =0
    Espero puedas ayudarme enserio las necesito

    • Hola Omar con gusto.
      Puedo atenderte de inmediato en la compra de un Gigg en fiverr (enlace fiverr, click aquí) o mediante deposito o transferencia bancaria
      El costo por tus 3 problemas es de $5 USD. Tambien puedes realizar una donación por la misma cantidad acá en el sitio web y con gusto te atiendo (en cualquier página puedes encontrar el ícono de Donar de paypal).

      Una vez realizado te pido de favor que me mandes el recibo a la direccion: [email protected]
      Te agradezco de antemano. Un saludo cordial

    • Siento mucho responder hasta ahora hair, solo doy ayuda en EDs lineales de 1er orden y separables, ahora, si te parece con mucho gusto te ayudo en tus ejercicios con costo. Contáctame via inbox de la página de facebook del sitio: ecuaciones diferenciales ejercicios y aplicaciones, asi se llama, saludos

Deja un comentario